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VISHNE IDENTITIES FOR M,(G)
AND THEIR COMPUTER REALIZATION BY MATHEMATICA

Tsetska Rashkova, Antoaneta Mihova
Angel Kanchev University of Ruse

Abstract: Vishne gave in [9] the explicit form of two identities of degree 8 for the matrix algebra
M Z(G), where G is the Grassmann algebra. In the paper a programme in Mathematica is used for

proving these two identities.
Keywords: Grassmann algebra, standard polynomial, Vishne identities.

PRELIMINARIES
Let G denote the infinite dimensional Grassmann algebra, namely
G=G(V)=K,vp,...|vpv;+v;v; =00, j=12,...).
The field K has a characteristic zero. The algebra G’ (without 1) has a basis
ViVig Vi, » where 1< <i,...<i;. The elements v; are called generators of G' while

the elements Vi Viy Vi for 1< <i,...<i; are called basic monomials of G'. For

G =G'uUl a generator is 1 as well. The algebras G and G’ are Pl-equivalent (they
satisfy one and the same identities).

The algebra G is in the mainstream of resent research in Pl theory. Its importance
is connected with the structure theory for the T -ideals of identities of associative algebras
developed by Kemer. In [4, Theorem 1.2] he proved that any T -prime T -ideal can be
obtained as the T -ideal of identities of one of three algebras, one of which is the algebra
M, (G).

Well known facts concerning the algebra G are the following:

Proposition 1 [5, Corollary, p. 437] The T -ideal T(G) is generated by the identity

[x1,%2,x3]=0.

Proposition 2 [1, Lemma 6.1] The algebra G satisfies Sn(xl,...,xn)k =0 for all
nk=>2.

Proposition 3 [2, Exercise 5.3] For G, = G(V}) over k -dimensional vector space
V;. all identities follow from the identity [x1,x,,x3]= 0 and the standard identity

Sop(XpseenXnp) = 2 (D% Xg1y---Xo@p) =0,
oeSym(2p)

where p is the minimal integer such that 2p >k .

Proposition 4 [3, Theorem 3.5] Let K be an infinite field. A basis of the identities
of Gy, is given by the polynomials

[x1, %0, x3] =0, [xg, xp]... X2 4, X244 2] = 0.

Some facts concerning the identities for the matrix algebra M,(G) were

considered in [7]. There it was proved that the algebra A, (G) has no identities of degree
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4n—2. In [8] Vishne described an efficient way to use the Sym(n)-module structure of
the ideal of multilinear identities in the computation of such dentities of degree n of a
given algebra. The method was used to show that M,(G) has identities of degree 8, but

of no smaller degree. Two explicit identities of degree 8 were given. Details on the method
used one could see in [8]. Here we give the definition of the identities as done in [8].
The rank and the dimension of the ideal / of 8-degree multilinear identities of

M,(G) were computed and the irreducible representations of the symmetric group
Sym(8) were considered. There were found 15 non-zero components of / and in four
cases (corresponding to the partiions 8 }(2,2,1,1,1,1), 8}(2,2,2,1,1),
8 }(3,1,1,1,1,1) and 8 |(4,1,1,1,1) the explicit identities could be presented.

This could be done using the relationship of the Sym(n)-module and the GL,, -
module structures of the considered ideal for a partition 1 }(14, ..., 4,,) of n[9].

Here we give only the definition of the highest weight vector of the irreducible GL,,-
module. It is a non-zero element

£ (e 5) = (0718, (o1, ) Tarpo

oeSym(n)

for some a, € K, where ¢y,...,q, are the lengths of the columns of the Young diagram

related to 4.

For example for a partiton 8 }(2,2,1,1,1,1) the lengths of the columns of the
corresponding Young diagram are 6 and 2. This explains the construction of the
multilinear polynomials T73(xy,...,Xg; V1, ¥2) and  To(xy,...,Xs5; Y1, V9, V3) done by
Vishne and given in the forthcoming exposition.

A pattern is a finite sequence of the letter A,B. If n is a pattern with a

appearances of 4 and b of B, we denote by 7(xy,...,X;;)},...,¥p) the product of

r

variables where the x's and )'s are combined according to 7. For example

ABBA(x1,X%5;¥1,¥2) = X1)1V2%, . A coefficient in front of a pattern 7 means that the

monomial should be multiplied by that coefficient.
Now let

P = > Sign(o)T(Xg(1ys-- s X5 (a)s Ve (1)>- > Ve (b))
oeSym(a),reSym(b)

P = > Sign(o)sign(z)(Xg(1ys-- s X (a)s Ye(1)s-+ > Ve(b))-
oeSym(a),reSym(b)

P + AAAABAAB, + AABBAAAA, — AABAAAB,
— AAAABBAA, — BAABAAAA, +BAAAABAA)

The component of [ in the representation 8 }(2,2,1,1,1,1) contains (and is thus

generated by) zﬁePPg(xl,...,x6;yl,y2). Similarly, the component of [ in the
representation 8 }(3,1,1,1,1,1) contains zﬁePP;(xl,...,x6;yl,y2). In the sum
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Xy s X3y 02) = 2 (Pr + Py) (1)

neP
only the monomials with y; preceding y, appear. On the other hand the original two

identities are given back by 7i(...;y1,v2) £ (.32, 1) -

The same phenomenon happens for another couple of representations.
Let

— AAABAABB, — AABBAABA, + ABBAABAA,
+ AAABBAAB, + AABAABBA, — ABAABBAA
— ABBAAAAB, + BAABBAAA, — BAAAABBA |
+ ABAAAABB, — BBAABAAA, + BBAAAABA

PP

The component in 8 }(2,2,2,1,1) contains zﬁePPPﬂ_(xl,...,xs;yl,yz,yg,) and the
component in 8 |(4,1,1,1,1) contains ZHEPPP;(xl,...,xs;yl,yz,y3).Again

Ty (X1 s X301, 32, 33) = 2, (Pr +BF) (2)
rePP

has only the monomials in which the order of y;,»,,y3 is even and

(. 531,2,3) =T (...; v3, 12, )1) gives the original identities.
Theorem 1 [8, Corollary 4.2] 7; and T, are multilinear identities of degree 8 of

M, (G).

COMPUTER REALIZATIONS OF THE IDENTITIES
Calculations in the Grassmann algebra are not done easily. We considered the
problem of finding a computer realization of the multiplication in it. Using the 1-1

correspondence between the integer numbers from 0 to 2” and the basic elements of a
Grassmann algebra over a n-dimensional vector space a programme in Mathematica
was written [6] using which we could prove in a computer way Vishne identities. For a
guide book in the system Mathematica we use [9]. We point that the programme considers
a finite dimensional Grassmann algebra. But this is not a limitation. Knowing the degree of

the polynomial, say n, it is enough to work in the algebra G, .

Firstly we introduce the polynomial 7} = T1(x1,x2,x3,x4,x5,x6,y1,y2) according
to (1) done by Mathematica. We use the notation ® for the Grassmann multiplication.

It is easier to present the polynomial in parts corresponding to the parts of the

pattern P .
Let we consider AAAABAAB. The corresponding part of the polynomial

T, =T1(x1,x2,x3,x4,x5,x6,y1,y2) is denoted as A[x1,x2,x3,x4,x5,x6,y1,y2]. Then
we have:

S2[x1,x2] = x1® x2 — x2 ® x1;

S3[x1,x2,x3] := S2[x1,x2] ® x3 + $2[x2,x3] ® x1+ S2[x3,x1] ® x2;
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S4[x1,x2,x3,x4] := S3[x1,x2,x3] ® x4 — S3[x2,x3,x4] ® x1+
S3[x3, x4, x1] ® x2 — S3[x4,x1, x2] ® x3;

Al[x1,x2,x3,x4, y1]:=S4[x]1,x2,x3,x4]® yI;

A2[x1,x2,x3,x4,x5, 1] := A1[x1,x2,x3, x4, y1] ® x5 +
A1[x2,x3,x4,x5, y1] ® x1+ A1[x3,x4,x5,x1, y1] ® x2 +
Al[x4,x5,x1,x2, Y11 ® x3 + A1[x5,x1,x2,x3, y1] ® x4;

A3[x1,x2,x3, x4, x5,x6, y1] := A2[x1,x2,x3, x4, x5, y1] ® x6 —
A2[x2,x3,x4,x5,x6, y1] ® x1+ A2[x3, x4, x5, x6,x1, y1] ® x2 —
A2[x4,x5,x6,x1,x2, y1] ® x3 + A2[x5, x6,x1,x2,x3, 1] ® x4 —
A2[x6, x1, x2, x3, x4, 1] ® x5;

A[x1,x2,x3,x4,x5,x6,y1,y2] := A3[x1,x2,x3,x4,x5,x6,y1] ® y2;

For AABBAAAA the corresponding polynomial is B[x1,x2,x3,x4,x5,x6, y1,y2].
We construct

Bl[x1,x2,y1,y2]:=(S2[x],x2]® y])® y2;

B2[x1,x2,x3,)1, 2] := B1[x1,x2, 1, y2] ® x3 +
B1[x2,x3,y1,y2] ® x1+ B1[x3,x1, y1, 2] ® x2;

B3[x1,x2,x3,x4,y1, y2] .= B2[x1,x2,x3, 1, y2] ® x4 —
B2[x2,x3,x4,y1,y2] ® x1+ B2[x3,x4,x1,y1, y2] ® x2 —
B2[x4,x1,x2, Y1, y2] ® x3;

B4[x1,x2,x3,x4,x5, 1, y2]:= B3[x1,x2,x3, x4, y1, y2] ® x5 +
B3[x2,x3,x4,x5,y1, y2] ® x1+ B3[x3, x4,x5,x1, y1, y2] ® x2 +
B3[x4,x5,x1,x2, 1, y2] ® x3 + B3[x5, x1, x2,x3, 1, y2] ® x4;

B[x1,x2,x3, x4,x5,x6, y1, y2] := B4[x1,x2,x3, x4,x5, )1, y2] ® x6 —
B4[x2,x3,x4,x5,x6, y1, y2] ® x1+ B4[x3, x4, x5,x6,x1, 11, y2] ® x2 —
B4[x4,x5,x6,x1,x2, y1, y2] ® x3 + B4[x5, x6, x1,x2, x3, y1, y2] ® x4 —
BA4[x6,x1,x2, x3, x4, 1, y2] ® x5;

For AABAAAB the corresponding polynomial is CH[x1,x2,x3,x4,x5,x6,y1,y2].
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We have
CHI1[x1,x2,yl]:=82[x1,x2]® yl;
CH2[x1,x2,x3, y1] := CH1[x1,x2, y1] ® x3 + CH1[x2, x3, y1] ® x1+
CHA1[x3,x1, 1] ® x2;

CH3[x1,x2,x3,x4,y1]:= CH2[x1,x2,x3, 1] ® x4 —
CH2[x2,x3,x4, y11® x1+ CH2[x3,x4,x1, y1] ® x2 —
CH2[x4,x1,x2, 1] ® x3;

CHA4[x1,x2,x3,x4,x5, y1] := CH3[x1,x2,x3, x4, y1] ® x5 +
CH3[x2,x3,x4,x5, y1]® x1+ CH3[x3, x4, x5,x1, y1] ® x2 +
CH3[x4,x5,x1,x2, y1] ® x3 + CH3[x5, x1,x2, x3, y1] ® x4;

CHY5[x1,x2,x3, x4,x5,x6, y1] := CH4[x1,x2,x3, x4, x5, y1] ® x6 —
CHA4[x2,x3,x4,x5,x6, 1] ® x1+ CH4[x3, x4, x5, x6, x1, y1] ® x2 —
CH4[x4,x5,x6,x1,x2, y1] ® x3 + CH4[x5, x6, x1,x2, x3, 1| ® x4 —
CH4[x6,x1,x2, x3, x4, 1] ® x5;

CH[x1,x2,x3,x4,x5,x6,y1,y2]:= CHS5[x1,x2,x3,x4,x5,x6, 1| ® y2;

The corresponding part to AAAABBAA is denoted as
DH[xl,x2,x3,x4,x5,x6,yl,y2] . We get

DH1[x1,x2,x3,x4,y1,y2]:=(S4[x],x2,x3,x4]® y1)® y2;

DH2[x1,x2,x3,x4,x5,y1, y2] := DH1[x1,x2,x3, x4, y1, y2] ® x5 +
DH1[x2,x3, x4, x5, 1, y2] ® x1+ DH1[x3, x4, x5,x1, y1, y2] ® x2 +
DHA1[x4, x5,x1,x2, 1, y2] ® x3 + DH1[x5, x1, x2, x3, 1, y2] ® x4,

DH[x1,x2,x3,x4,x5,x6, y1, 2] := DH2[x1,x2, x3, x4, x5, y1, y2] ® x6 —
DH2[x2,x3,x4,x5,x6, Y1, y2] ® x1+ DH2[x3, x4, x5, x6,x1, y1, y2] ® x2 —
DH2[x4,x5,x6,x1,x2, 1, y2] ® x3 + DH2[x5, x6, x1,x2,x3, y1, y2] ® x4 —
DH 2[x6,x1,x2, x3, x4, 1, y2] ® x5;

The part BAABAAAA gives rise to EH[x1,x2,x3,x4,x5,x6,y1,y2]. Thus

EH1[x1,x2,y1,y2]=(»1®x1)®x2)® y2 - (1 ®x2)® x1)® y2;
EH2[x1,x2,x3, y1, 2] .= EH1[x1,x2, y1, y2] ® x3 +
EHA[x2,x3,y1,y2] ® x1+ EH1[x3, x1, y1, y2] ® x2;
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EH3[x1,x2,x3,x4,y1, y2]:= EH2[x1,x2,x3, Y1, y2] ® x4 —
EH2[x2,x3,x4,y1,y2] ® x1+ EH2[x3, x4,x1, )1, y2] ® x2 —
EH2[x4,x1,x2,1, y2] ® x3;

EHA[x1,x2,x3,x4,x5, 11, y2] := EH3[x1,x2,x3, x4, 1, y2] ® x5 +
EH3[x2,x3,x4,x5,y1,y2] ® x1+ EH3[x3, x4, x5,x1, y1, y2] ® x2 +
EH3[x4,x5,x1,x2, 1, y2] ® x3 + EH 3[x5, x1,x2, x3, 1, y2] ® x4;

EH[x1,x2,x3,x4,x5,x6, 1, y2] := EH4[x1,x2, x3, x4, x5, y1, 2] ® x6 —
EHA4[x2,x3, x4,x5,x6, 11, y2] ® x1+ EH4[x3, x4, x5, x6, x1, y1, y2] ® x2 —
EHA4[x4,x5,x6,x1,x2, y1, y2] ® x3 + EH4[x5, x6, x1,x2, x3, y1, y2] ® x4 —
EHA4[x6,x1,x2,x3, x4, 1, y2] ® x5

The polynomial FH[x1,x2,x3,x4,x5,x6,yl,y2] is related to BAAAABAA and is
constructed in a similar way, namely

FHI1[x1,x2,y1]:=(y1®x1)®x2 - (y1 ® x2) ® x1;

FH2[x1,x2,x3,y1]:= FH1[x1,x2, 1] ® x3 + FH1[x2,x3, y1] ® x1+
FH1[x3,x1, 1] ® x2;

FH3[x1,x2,x3,x4,y1]:= FH2[x1,x2,x3, y1] ® x4 —
FH2[x2,x3,x4, y11® x1+ FH2[x3,x4,x1, y1] ® x2 —
FH2[x4,x1,x2, y1] ® x3;

FHA[x1,x2,x3,x4,y1,y2]:= FH3[x1,x2,x3,x4,y1|&® y2;

FH3[x1,x2,x3,x4,x5,y1,y2] .= FH4[x1,x2,x3, x4, 1, y2] ® x5 +
FHA4[x2,x3,x4,x5, y1, y2] ® x1+ FH4[x3, x4,x5,x1, 11, y2] ® x2 +
FHA4[x4,x5,x1,x2, 11, y2] ® x3 + FH4[x5, x1,x2, x3, y1, y2] ® x4,

FH[x1,x2,x3,x4,x5,x6, y1, y2] := FH5[x1,x2,x3, x4, x5, y1, y2] ® x6 —
FH5[x2,x3,x4,x5,x6, 1, y2] ® x1+ FH5[x3, x4, x5, x6,x1, y1, y2] ® x2 —
FH3[x4,x5,x6,x1,x2, y1, y2] ® x3 + FH5[x5, x6, x1,x2, x3, y1, y2] ® x4 —
FHY5[x6, x1,x2,x3, x4, y1, y2] ® x5;

At the end we form the entire polynomial
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T1[x1,x2,x3, x4, x5,x6, y1, y2] := A[x1,x2, x3, x4, x5, x6, 1, y2] +
B[x1,x2,x3, x4,x5,x6, y1, y2] - CH[x1, x2, x3, x4, x5, x6, 1, y2] —
DH[x1,x2,x3, x4, x5, x6, y1, y2] — EH[x1,x2,x3, x4, x5, x6, y1, y2] +
FH[x1,x2,x3, x4, x5, x6, y1, y2];

In a similar way the recurrent construction of 7, =7'2(x1,x2,x3,x4,x5,y1,y2,y3)
is realized due to (2).

Then we set n =8 in the Mathematica programme realized in [6]. The evaluation
on M,(G) was done in two stages.

We use the operator Random[type,{min,max}] bringing out an arbitrary number of
type Integer, Real or Complex. At the beginning we specify the type as Real. Due to the
rounding done in calculations the needed result was not obtained.

Then for exact calculations we specify the type as Integer. For max=500 for
example we have

For[i=1,i< 28,i++,{a[i] = Random|[Integer,{0,500} ],b[i] = Random[Integer,{0,500}],
c[i]=Random|Integer,{0,500}],d[i] = Random[Integer,{0,500}]} ]

for a 2x 2 matrix
x ={{drray|a,256], Array|b,256]},{ Array[c,256], Array|d ,256]} }.

For the evaluation of the polynomial 7j(x;,...,Xg,1,¥2) by Intel Pentium computer with
2GB RAM 40 minutes were needed.

The calculation of 75(xq,...,X5,)],V>,¥3) With random matrices took 70 minutes
time.

Then we consider the general case with arbitrary matrices introducing a matrix
variable x only as

x ={{drray|a,256], Array|b,256]},{ Array[c,256], Array|d ,256]} }.
The possibilities of our Pentium computer were not enough for calculating the polynomials

L (xy,..., X6, V1,¥2) and I5(xq,...,X5,¥1,V>,3) in the general case.

We point that the identity [xl,xz,x3]2 =0 for the upper triangular two by two

matrices with entries from G, for n=12 was confirmed for 3 hours by Intel Celeron
computer with 2GB RAM.
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THXOECTBA HA BULLUHE 3A M,(G) U TAXHATA KOMMIOTHPHA
PEANU3ALUUNA YPE3 MATHEMATICA

Lleuka PawkoBa, AHToaHeTa MuxoBa

PyceHcku yHueepcumem “AHeen KbH4yeg”

Pe3rome: B ceosi paboma [8] BuwHe dasa sseHama ¢hopma Ha dse mbxdecmea om cmereH 8 3a
mampuyHama anzebpa M 2 (G) kvdemo (G e lpacmaHosama anzebpa. B cmamusima ce u3rnon3sa
npoepama Ha Mathematica 3a dokaszeaHe Ha me3u dee mbxdecmaa.

Knroyoeu dymu: pacmaHosa anzebpa, cmaH0apmeH nofuHoM, mbxoecmea Ha BuwHe
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