PROCEEDINGS
of the Union of Scientists - Ruse

Book 5
Mathematics, Informatics and Physics

Volume 11, 2014

RUSE
Proceedings
of the Union of Scientists– Ruse

Contains five books:

1. Technical Sciences
2. Medicine and Ecology
3. Agrarian and Veterinary Medical Sciences
4. Social Sciences
5. Mathematics, Informatics and Physics
BOARD OF DIRECTORS OF THE US - RUSE

1. Prof. Hristo Beloev, DSc – Chairman
2. Assoc. Prof. Vladimir Hvarchilkov – Vice-Chairman
3. Assoc. Prof. Teodor Iliev – Secretary in Chief

SCIENTIFIC SECTIONS WITH US - RUSE

1. Assoc. Prof. Aleksandar Ivanov – Chairman of "Machine-building Sciences and Technologies" scientific section
2. Prof. Ognjan Alipiev – Chairman of "Agricultural Machinery and Technologies" scientific section
3. Assoc. Prof. Ivan Evtimov – Chairman of "Transport" scientific section
4. Assoc. Prof. Teodor Iliev – Chairman of "Electrical Engineering, Electronics and Automation" scientific section
5. Assist. Prof. Diana Marinova – Chairman of "Agrarian Sciences" scientific section
6. Svilen Dosev, MD – Chairman of "Medicine and Dentistry" scientific section
7. Assoc. Prof. Vladimir Hvarchilkov – Chairman of "Veterinary Medical Sciences" scientific section
8. Assist. Prof. Anton Nedjalkov – Chairman of "Economics and Law" scientific section
9. Assoc. Prof. Tsetska Rashkova – Chairman of "Mathematics, Informatics and Physics" scientific section
10. Assoc. Prof. Ljubomir Zlatev – Chairman of "History" scientific section
11. Assoc. Prof. Rusi Rusev – Chairman of "Philology" scientific section
12. Prof. Penka Angelova, DSc – Chairman of "European Studies" scientific section
13. Prof. Antoaneta Momchilova - Chairman of "Physical Education, Sport and Kinesitherapy" section

CONTROL PANEL OF US - RUSE

1. Assoc. Prof. Jordanka Velcheva
2. Assoc. Prof. Nikolai Kotsev
3. Assist. Prof. Ivanka Dimitrova

EDITOR IN CHIEF OF PROCEEDINGS OF US - RUSE

Prof. Zlatojivka Zdravkova
The Ruse Branch of the Union of Scientists in Bulgaria was founded in 1956. Its first Chairman was Prof. Stoyan Petrov. He was followed by Prof. Trifon Georgiev, Prof. Kolyo Vasilev, Prof. Georgi Popov, Prof. Mityo Kanev, Assoc. Prof. Boris Borisov, Prof. Emil Marinov, Prof. Hristo Beloev. The individual members number nearly 300 recognized scientists from Ruse, organized in 13 scientific sections. There are several collective members too—organizations and companies from Ruse, known for their success in the field of science and higher education, or their applied research activities. The activities of the Union of Scientists – Ruse are numerous: scientific, educational and other humanitarian events directly related to hot issues in the development of Ruse region, including its infrastructure, environment, history and future development; commitment to the development of the scientific organizations in Ruse, the professional development and growth of the scientists and the protection of their individual rights.

The Union of Scientists – Ruse (US – Ruse) organizes publishing of scientific and popular informative literature, and since 1998 – the "Proceedings of the Union of Scientists- Ruse".

CONTENTS

Mathematics

Tsetska Rashkova .. 7
The T-ideal of the X–figural matrix algebra

Julia Chaparova, Eli Kalcheva 14
Existence and multiplicity of periodic solutions of second – order ODE with sublinear and superlinear terms

Veselina Evimova .. 23
A study of the possibilities to establish a stationary mode in an auto fleet

Informatics

Georgi Krastev .. 29
Software for electronic trade from Mobile terminal

Georgi Krastev .. 37
Developing a software platform for distance learning in audio-video producing

Valentin Velikov, Aleksandar Iliev 44
Simple systems Aid the software development

Victoria Rashkova .. 53
Data encryption software

Kamelia Shoylekova .. 63
Business architecture of an e-commerce company

Valentin Velikov, Malvina Makarieva 72
Parser Java-code to XML-file

Metodi Dimitrov .. 80
Updating the records of the search engines due to a client request

Svetlozar Tsankov .. 84
Cognitive approach to developing learning design for interactive multimedia training

Galina Atanasova .. 91
An empirical study of a model for teaching algorithms

Desislava Baeva, Svilena Marinova............................ 98
Semantic Web in e-commerce

Ivan Stanev, Lyudmil Georgiev 103
Robovisor- Psychotherapist’s selfsupervision robotic assistant in positive psychotherapy
Physics

Galina Krumova...109
Nuclear charge form factor and cluster structure

Galina Krumova...116
Contributions of folding, cluster and interference terms to the
charge form factor of 6Li Nucleus
THE T - IDEAL OF THE X - FIGURAL MATRIX ALGEBRA

Tsetska Rashkova

Angel Kanchev University of Ruse

Abstract: In the paper we consider the X - figural matrix algebra and describe the T -ideal of its identities over the infinite dimensional Grassmann algebra E.

Keywords: Grassmann algebra, matrix algebras with Grassmann entries, identities, finitely generated T -ideals

PRELIMINARIES

We recall the definition of the infinite dimensional Grassmann algebra E as

$$E = E(V) = K\langle e_1, e_2, \ldots | e_i e_j + e_j e_i = 0, i, j = 1, 2, \ldots \rangle,$$

where the field K has characteristic zero.

The algebra E is in focus of recent research in PI-theory. Its importance is connected with the structure theory for the T-ideals of identities of associative algebras developed by Kemer [4]. Many other applications of E are investigated as well, see for example [7].

The significance of considering the matrix algebra $M_n(E)$ is confirmed by the following statement as the trivial isomorphism $E \otimes M_n(K) \cong M_n(E)$ holds:

Proposition 1 [3, Corollary 8.2.4] For every PI-algebra R there exists a positive n such that $T(R) \supseteq T(M_n(E))$, i.e. R satisfies all polynomial identities of the $n \times n$ matrix algebra $M_n(E)$ with entries from the Grassmann algebra.

For the PI-properties of E and $M_n(E)$ one could see [2,5]. Here we formulate:

Proposition 2 [5, Corollary, p. 437] The T-ideal $Id(E)$ is generated by the identity $[x_1, x_2, x_3] = 0$.

Proposition 3 [2, Lemma 6.1] The algebra E satisfies $S_n(x_1, \ldots, x_n)^k = 0$ for all $n, k \geq 2$ and

$$S_n(x_1, \ldots, x_n) = \sum_{\sigma \in \text{Sym}(n)} (-1)^\sigma x_{\sigma(1)} \ldots x_{\sigma(n)}$$

being the standard identity.

Proposition 4 [2, Corollary 6.6] The algebra $M_n(E)$ does not satisfy the identity $S_m(x_1, \ldots, x_m)^n = 0$

for any m.

It is an open question [1, p.356] to describe the identities of minimal degree of $M_n(E)$. Even for $n = 2$ we know very little. There is a result of U. Vishne [8] that the minimal degree of an identity for $M_2(E)$ is 8 and he gives the explicit form of two concrete multilinear polynomials $T_1(x_1, \ldots, x_6; y_1, y_2)$ and $T_2(x_1, \ldots, x_5; y_1, y_2, y_3)$ being identities for $M_2(E)$. We rely on [8] for their definition.
In the paper we find some identities of minimal degree for the so called X-figural matrix algebra and describe completely its T-ideal in both the cases (odd and even order of the considered matrices).

THE X-FIGURAL MATRIX ALGEBRA

We use the term "X-figural matrix algebra" for algebras of the type described below. We consider two cases if the order of the matrices is odd or even.

Let $R_l(E)$ be the X-figural $(2n+1) \times (2n+1)$ matrix algebra of the matrices of type

$$
\begin{pmatrix}
 a_1 & 0 & \ldots & \ldots & \ldots & 0 & a_1 \\
 0 & a_2 & 0 & \ldots & 0 & a_2 & 0 \\
 \ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\
 0 & \ldots & 0 & a_{n+1} & 0 & \ldots & 0 \\
 \ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\
 0 & a_{2n} & 0 & \ldots & 0 & a_{2n} & 0 \\
 a_{2n+1} & 0 & \ldots & \ldots & \ldots & 0 & a_{2n+1}
\end{pmatrix} : a_j \in E, j = 1, \ldots, 2n + 1.
$$

The algebra $R_l(E)$ is with basis

$$
\begin{align*}
 f_1 &= e_{11} + e_{1,2n+1} \\
 f_2 &= e_{22} + e_{2,2n} \\
 \cdots &= \cdots \\
 f_n &= e_{nn} + e_{n,n+2} \\
 f_{n+1} &= e_{n+1,n+1} \\
 f_{n+2} &= e_{n+2,n} + e_{n+2,n+2} \\
 \cdots &= \cdots \\
 f_{2n+1} &= e_{2n+1,1} + e_{2n+1,2n+1}
\end{align*}
$$

This basis is a multiplicative one with properties $f_i f_j = f_i$ for $i = j$ or $i + j = 2n + 2$ and $f_i f_j = 0$ for $i \neq j$ or $i + j \neq 2n + 2$.

We consider the isomorphism:

$$
\begin{align*}
 f_1 &\approx e_{2n+1,2n+1}, f_2 \approx e_{2n,2n}, \ldots, f_n \approx e_{n+2,n+2}, f_{n+1} \approx e_{n+1,n+1}, \\
 f_1 - f_{2n+1} &\approx e_{1,2n+1}, f_2 - f_{2n} \approx e_{1,2n}, \ldots, \\
 f_{n-1} - f_{n+3} &\approx e_{1,n+3}, f_n - f_{n+2} \approx e_{1,n+2}.
\end{align*}
$$

Thus $R_l(E)$ is PI-equivalent to the algebra of the matrices of type
The even case gives the algebra $R2(E)$ of the matrices of type

$$
\begin{pmatrix}
0 & \ldots & 0 & E & \ldots & E \\
\vdots & \vdots & 0 & \ddots & \ddots & \\
\vdots & 0 & E & \ddots & \ddots & \\
\vdots & \ldots & \ldots & \ddots & \ddots & \\
0 & \ldots & 0 & \ldots & \ldots & E \\
\end{pmatrix}
$$

where $f_i f_j = f_i$ for $i + j = 2n + 1$ and $f_i f_j = 0$ for $i + j \neq 2n + 1$.

It is with basis

\[f_1 = e_{11} + e_{1,2n}, \quad f_2 = e_{22} + e_{2,2n-1}, \quad \ldots, \]
\[f_n = e_{nn} + e_{n,n+1}, \quad f_{n+1} = e_{n+1,n} + e_{n+1,n+1}, \]
\[f_{n+2} = e_{n+2,n-1} + e_{n+2,n+2}, \quad f_{n+3} = e_{n+3,n-2} + e_{n+3,n+3}, \quad \ldots, \]
\[f_{2n-1} = e_{2n-1,2} + e_{2n-1,2n-1}, \quad f_{2n} = e_{2n,1} + e_{2n,2n}, \]

where $f_i f_j = f_i$ for $i + j = 2n + 1$ and $f_i f_j = 0$ for $i + j \neq 2n + 1$.

Analogously

\[f_1 \approx e_{2n,2n}, f_2 \approx e_{2n-1,2n-1}, \ldots, \]
\[f_{n-1} \approx e_{n+2,n+2}, f_n \approx e_{n+1,n+1}, f_{n+1} \approx e_{nn}, \]
\[f_1 - f_{2n} \approx e_{1,2n}, f_2 - f_{2n-1} \approx e_{1,2n-1}, \ldots, \]
\[f_{n-1} - f_{n+2} \approx e_{1,n+2}, f_n - f_{n+1} \approx e_{1,n+1}. \]

We get that the algebra $R2(E)$ is PI-equivalent to the algebra of the matrices...
We start considering the two X-figural algebras with entries from a field K with characteristic zero.

Theorem 1 The algebras $R1(K)$ and $R2(K)$ satisfy the identity

$$X[X_1, X_2] = 0.$$

Proof: It is easy to be seen that the sum of the entries in each column of the commutator of two matrices for any of the two algebras is zero. Thus the multiplication rule for $X[X_1, X_2]$ gives the desired identity.

Remark 1 It could be proved that the T-ideal of any of the algebras $R1(K)$ and $R1(K)$ is generated by the identity $X[X_1, X_2] = 0$. The needed considerations are generalized in the proof of Theorem 4.

Let now the entries of the two matrices be Grassmann entries. In this case the sum of the entries in each column of the matrix $[X_1, X_2, X_3]$ is zero and we get

Theorem 2 The algebras $R1(E)$ and $R2(E)$ satisfy the identity

$$X[X_1, X_2, X_3] = 0.$$

In [6] the following theorem was proved:

Theorem 3 Any algebra, satisfying the identity $X[X_1, X_2, X_3] = 0$, satisfies the identities $T_1(x_1, ..., x_6; y_1, y_2) = 0$ and $T_2(x_1, ..., x_5; y_1, y_2, y_3) = 0$, defined in [8].

Thus we get

Corollary 1 In the algebras $R1(E)$ and $R2(E)$ the identities

$T_1(x_1, ..., x_6; y_1, y_2) = 0$ and $T_2(x_1, ..., x_5; y_1, y_2, y_3) = 0$ hold.

For any polynomial $f \in K\langle X \rangle$ the values of f in $R1(E)$ and in E are related as follows: if $f \mid_{R1(E)} = (a_{ij})$, then the entry $a_{n+1,n+1} = f \mid_{E}$.

Thus we come to

Corollary 2 $Id(R1(E)) \subset Id(E)$.

An analogous inclusion is valid for the algebra $R2(E)$ as well:

Corollary 3 $Id(R2(E)) \subset Id(E)$.

Proof: We consider the algebra $R_0(E) = \{R2(E) : a_i = 0, i = n+1, ..., 2n\}$ and obviously $R_0(E) \approx E$. As $R_0(E) \subset R2(E)$ we get that

$Id(R2(E)) \subset Id(R0(E)) = Id(E)$.

We could describe the T-ideals of the algebras $R1(E)$ and $R2(E)$ completely. They turned to be finitely generated.
Theorem 4 The T-ideals $\text{Id}(R1(E))$ and $\text{Id}(R2(E))$ are generated by the identity $X[X_1, X_2, X_3] = 0$.

Proof: We give the proof in the odd case only. For the even case only slightly changes of the indices are needed ($\ldots 2n+1 = \ldots 2n$).

As all identities in E follow from $[x_1, x_2, x_3] = 0$, we have to show that there are no consequences of this identity which are identities in $R1(E)$ but are not consequences of $x[x_1, x_2, x_3] = 0$.

I. We start with the consequences of degree 4. We get them in two ways - multiplying $[x_1, x_2, x_3] = 0$ on either side by x or by substituting in the identity any of the variables i.e. $x_i = xx_i$ (the substitution $x_i = x_ix$ leads to changing only the indices of the variables).

In the transformations below we repeatedly use the trivial identity $[a, bv] = [a, b]v + b[a, v]$.

We get

\[[x_1, x_2, x_3] = [x_1, x_2, x_3]x + x_3[x_1, x_2, x] \]

\[[x_1, x_2, x_3] = [(x_1, x_2)x, x_3] + [x_2[x_1, x], x_3] \]

\[= -[x_3, [x_1, x_2]x] - [x_3, x_2[x_1, x]] \]

\[= -[x_1, x_2]x[x_3, x] - [x_3, [x_1, x_2]]x \]

\[\quad - x_2[x_3, [x_1, x]] - [x_3, x_2][x_1, x]. \]

As in $R1(E)$ the identity $X[X_1, X_2, X_3] = 0$ holds, the possible identity of degree 4 will be of the form

\[T = \alpha[X_1, X_2, X_3]X + \beta([X_1, X_2][X_3, X] + [X_3, X_2][X_1, X]) \]

for some values of $\alpha, \beta \in K$.

We follow the $(1, 1)$ entry of the matrix T in $R1(E)$.

We use the notations $X_1 = (a_i), X_2 = (b_i), X_3 = (c_i)$ and $X = (d_i)$.

The $(1, 1)$-entry of $[X_1, X_2]$ is $[a_1, b_1] + a_1b_{2n+1} - b_1a_{2n+1}$. Modulo the Grassmann identity the $(1, 1)$-entry of $[X_1, X_2, X_3]X$ is

\[([a_1b_{2n+1} - b_1a_{2n+1}] + c_1 + b_{2n+1})c_{2n+1} \]

\[- c_1([a_{2n+1}b_{2n+1} + c_{2n+1}])d_1 + d_{2n+1}). \]

For the $(1, 1)$ entry of $[X_1, X_2][X_3, X] + [X_3, X_2][X_1, X]$ we get

\[-(a_1b_{2n+1} - b_1a_{2n+1})[d_1 + d_{2n+1}] \]

\[+ c_1[b_{2n+1} - b_{2n+1}]c_{2n+1} + c_{2n+1} \]

\[- c_1+b_{2n+1} - c_{2n+1})[d_1 + d_{2n+1}, a_1 + a_{2n+1}]. \]

We calculate the polynomial T for matrices X_1, X_2, X_3, X in which the values of the corresponding entries are the following elements of E, namely

\[a_1 = e_1 \quad b_1 = e_2 \quad c_1 = e_3 \quad d_1 = e_2e_3 \]

\[a_{2n+1} = e_1 \quad b_{2n+1} = e_4 \quad c_{2n+1} = e_5 \quad d_{2n+1} = e_i e_6. \]

Thus we come to

\[\alpha e_1 e_2 e_3 e_4 e_5 + \beta = 0 \]

meaning that $\alpha = 0$.

Really the form of the \((1,1)\) entry of \([X_1, X_2][X_3, X] + [X_3, X_2][X_1, X]\) shows that if for every \(i\) either \(d_i\) or any of \(c_i\) and \(a_i\) are of even degree, this entry is zero. However we have to see the value of the \((1,1)\)-entry of \([X_1, X_2, X_3]X\) as well.

Next we make the substitution

\[
\begin{align*}
& a_1 = e_1 \quad b_1 = e_3 \quad c_1 = e_5 \quad d_1 = e_7 \\
& a_{2n+1} = e_2 \quad b_{2n+1} = e_4 \quad c_{2n+1} = e_6 \quad d_{2n+1} = e_8.
\end{align*}
\]

The result is

\[
2\beta(-e_1 e_3 e_5 e_7 - e_1 e_3 e_5 e_8 - e_1 e_4 e_6 e_7 - e_1 e_4 e_6 e_8 \\
+ e_2 e_3 e_5 e_7 + e_2 e_3 e_5 e_8 + e_2 e_4 e_5 e_7 + e_2 e_4 e_5 e_8) = 0.
\]

This means that \(\beta = 0\) and in \(RI(E)\) there are no identities of degree 4 which are consequences of \([X_1, X_2, X_3] = 0\).

II. It is enough to consider only the identities of degree 4 as for the consequences of higher degree we have the following recurrent relations in \(RI(E)\):

\[
\begin{align*}
[x_1, x_2, x_3 u_1 u_2 \ldots u_{n-1} u_n] = & [x_1, x_2, x_3 u_1 u_2 \ldots u_{n-1}][u_n] + x_3 (u_1 u_2 \ldots u_{n-1})[x_1, x_2, u_n] \\
= & [x_1, x_2, x_3 u_1 u_2 \ldots u_{n-1}][u_n] \\
[x_1, x_2 v_1 v_2 \ldots v_{k-1} v_k, x_3] = & [x_1, x_2 v_1 v_2 \ldots v_{k-1}, x_3] v_k \\
& -[x_1, x_2 v_1 v_2 \ldots v_{k-1}][x_3, v_k] - [x_3, x_2 v_1 v_2 \ldots v_{k-1}][x_1, v_k].
\end{align*}
\]

Thus we get that \(Id(RI(E)) = \langle X[X_1, X_2, X_3] = 0 \rangle\).

I would like to thank the referee for useful suggestions improving the original form of the paper.

REFERENCES

Цецка Рашкова

Русенски университет “Ангел Кънчев”

Резюме: В статията се разглежда X-фигуралната матрична алгебра и се описва T-идеалът на тъждествата в нея в случая когато тя се разглежда над безкрайномерната Грасманова алгебра \mathcal{E}.

Ключови думи: Грасманова алгебра, матрични алгебри с Грасманови елементи, тъждества, крайнопородени T-идеали.
Requirements and guidelines for the authors - "Proceedings of the Union of Scientists - Ruse"
Book 5 Mathematics, Informatics and Physics

The Editorial Board accepts for publication annually both scientific, applied research and methodology papers, as well as announcements, reviews, information materials, adds. No honoraria are paid.

The paper scripts submitted to the Board should answer the following requirements:
1. Papers submitted in English are accepted. Their volume should not exceed 8 pages, formatted following the requirements, including reference, tables, figures and abstract.
2. The text should be computer generated (MS Word 2003 for Windows or higher versions) and printed in one copy, possibly on laser printer and on one side of the page. Together with the printed copy the author should submit a disk (or send an e-mail copy to: vkr@ami.uni-ruse.bg).
3. Compulsory requirements on formatting:
 - font - Ariel 12;
 - paper Size - A4;
 - page Setup - Top: 20 mm, Bottom: 15 mm, Left: 20 mm, Right: 20 mm;
 - Format/Paragraph/Line spacing - Single;
 - Format/Paragraph/Special: First Line, By: 1 cm;
 - Leave a blank line under Header - Font Size 14;
 - Title should be short, no abbreviations, no formulas or special symbols - Font Size 14, centered, Bold, All Caps;
 - One blank line - Font Size 14;
 - Name and surname of author(s) - Font Size: 12, centered, Bold;
 - One blank line - Font Size 12;
 - Name of place of work - Font Size: 12, centered;
 - One blank line;
 - abstract – no formulas - Font Size 10, Italic, 5-6 lines;
 - keywords - Font Size 10, Italic, 1-2 lines;
 - one blank line;
 - text - Font Size 12, Justify;
 - references;
 - contact address - three names of the author(s) scientific title and degree, place of work, telephone number, Email - in the language of the paper.
4. At the end of the paper the authors should write:
 - The title of the paper;
 - Name and surname of the author(s);
 - abstract; keywords.

Note: The parts in item 4 should be in Bulgarian and have to be formatted as in the beginning of the paper.
5. All mathematical signs and other special symbols should be written clearly and legibly so as to avoid ambiguity when read. All formulas, cited in the text, should be numbered on the right.
6. Figures (black and white), made with some of the widespread software, should be integrated in the text.
7. Tables should have numbers and titles above them, centered right.
8. Reference sources cited in the text should be marked by a number in square brackets.
9. Only titles cited in the text should be included in the references, their numbers put in square brackets. The reference items should be arranged in alphabetical order, using the surname of the first author, and written following the standard. If the main text is in Bulgarian or Russian, the titles in Cyrillic come before those in Latin. If the main text is in English, the titles in Latin come before those in Cyrillic. The paper cited should have: for the first author – surname and first name initial; for the second and other authors – first name initial and surname; title of the paper; name of the publishing source; number of volume (in Arabic figures); year; first and last page number of the paper. For a book cited the following must be marked: author(s) – surname and initials, title, city, publishing house, year of publication.
10. The author(s) and the reviewer, chosen by the Editorial Board, are responsible for the contents of the materials submitted.

Important for readers, companies and organizations
1. Authors, who are not members of the Union of Scientists - Ruse, should pay for publishing of materials.
2. Advertising and information materials of group members of the Union of Scientists – Ruse are published free of charge.
3. Advertising and information materials of companies and organizations are charged on negotiable (current) prices.

Editorial Board