PROCEEDINGS

of the Union of Scientists - Ruse

Book 5 Mathematics, Informatics and Physics

Volume 13, 2016

RUSE

PROCEEDINGS OF THE UNION OF SCIENTISTS - RUSE

EDITORIAL BOARD

Editor in Chief Prof. Zlatojivka Zdravkova, PhD

Managing Editor Assoc. Prof. Tsetska Rashkova, PhD

Members

Assoc. Prof. Petar Rashkov, PhD Prof. Margarita Teodosieva, PhD Assoc. Prof. Nadezhda Nancheva, PhD

Print Design

Assist. Prof. Victoria Rashkova, PhD

Union of Scientists - Ruse

16, Konstantin Irechek Street 7000 Ruse BULGARIA Phone: (++359 82) 828 135, (++359 82) 841 634 E-mail: suruse@uni-ruse.bg web: suruse.uni-ruse.bg

Contacts with Editor

Phone: (++359 82) 888 738 E-mail: zzdravkova@uni-ruse.bg

PROCEEDINGS

of the Union of Scientists - Ruse

ISSN 1314-3077

The Ruse Branch of the	CONTENTS
Union of Scientists in	
Bulgaria was founded in 1956.	Mathematics
Its first Chairman was Prof.	mathematics
Stoyan Petrov. He was followed	
by Prof. Trifon Georgiev, Prof.	Diko M. Souroujon7
Kolyo Vasilev, Prof. Georgi	Heteroclinic solutions on a second-order difference equation
Popov, Prof. Mityo Kanev,	
Assoc. Prot. Boris Borisov, Prot.	Nikolay Dimitrov16
Emil Marinov, Prof. Hristo	Multiple solutions for a nonlinear discrete fourth order
pumber poerly 200 recognized	p-Laplacian equation
scientists from Ruse organized	
in 13 scientific sections. There	Nikolay Dimitrov26
are several collective members	Existence of solutions of second order nonlinear difference
too – organizations and	problems
companies from Ruse, known	
for their success in the field of	Veselina Evtimova33
science and higher education,	Assessment of the characteristics of the system 'center for
or their applied research	emergency medical aid' for the provision of timely service to
activities. The activities of the	patients
Union of Scientists – Ruse are	Md Oberiff Halding MA Nammad Jalana II' ar an Daesara Anaiman
numerous: scientific,	Ma Sharif Uddin, M. Nazrul Islam, Iliyana Raeva, Aminur
educational and other	Efficiency of allocation table method for colving transportation
humanitarian events directly	maximization problem
related to hot issues in the	
development of Ruse region,	Tsetska Rashkova. Nadeida Danova49
environment history and future	An application of the symmetric group in colouring objects
development: commitment to	
the development of the scientific	
organizations in Ruse. the	
professional development and	
growth of the scientists and the	Informatics
protection of their individual	
rights.	Olas Caralik, Elana Malyahaya, Katalina Origaraya
The Union of Scientists –	Olga Gorellik, Eleria Malysneva, Katalina Grigorova
Ruse (US – Ruse) organizes	finegrated model of educational process with elements of
publishing of scientific and	foreign educational programs
popular informative literature,	Calina Atanagana Kataling Oringram
and since 1998 – the	Galina Atanasova, Katalina Grigorova
"Proceedings of the Union of	the place and the role of business processes generation in
Scientists- Ruse".	
	Galina Atanasova Ivavlo Kamenarov 68
	Business process generation opportunities
BOOK 5	
	Kamelia Shoylekova, Peter Sabev74
"MATHEMATICS,	Tools implementing integrated solutions to analysis and
INFORMATICS AND	transformations of business processes through Petri Nets
PHYSICS"	
	Victoria Rashkova
VOLUME 13	Possibilities and protection capabilities of social networks

M.	ATHEMATICS,	INFORMATICS	AND	PHYSICS
----	-------------	-------------	-----	---------

BOOK 5 "MATHEMATICS, INFORMATICS AND PHYSICS"	 Valentin Velikov, Iliya Mutafov	
VOLUME 13	Yoana Hadzhiyska, Ivan Ivanov, Georgi Dimitrov, Alexey Bychkov	
	Physics Galina Krumova	

web: suruse.uni-ruse.bg

AN APPLICATION OF THE SYMMETRIC GROUP IN COLOURING OBJECTS¹

Tsetska Rashkova, Nadejda Danova

Angel Kanchev University of Ruse

Abstract: The paper illustrates how basic ideas of Group Theory, a part of an university course in Algebra at the University of Ruse, could be better understood if we consider proper applications of interest for the students, namely properties of the symmetric group in regard to colouring objects.

Keywords: symmetric group, cyclic index of a group of permutations, colourings of objects with different colours.

INTRODUCTION

The nowadays situation with the background of the first year students forces the teaching of the university courses to be in close connection with it. We think that better understanding of the material could be facilitated if more different kinds of examples prevail in the exposition and the knowledge from earlier taught courses is widely used. When a graduate student is working on his Bsc Degree thesis he could apply a broader view on the topic selected and he could both find connections being impossible earlier and come to a better understanding of the material earlier taught.

The paper gives an approach for achieving these goals concerning basic ideas of Group Theory. It shows how a graduate student in the speciality Pedagogics of Education in Mathematics and Informatics could interprete ideas from the university course in Algebra at the University of Ruse in her MsDegree thesis.

The review is based partially on [1,2,3,4] and we consider that the basic notions of Group Theory and the nature of the symmetric group S_n are well known.

Here we'll give the definitions for orbits and stabilizers and some of their properties.

Definition 1. Let *G* be the group of permutations of the set *X*. The relation $x \sim y \Leftrightarrow g(x) = y$ for $x, y \in X$ and $g \in G$ is reflexive, symmetric and transitive. The distinct equivalence classes of ~ form a partition of *X*. The equivalent classes are called orbits of *G* in *X*.

The orbit Gx contains all elements of X, which are indistinguishable by the action of G, namely $Gx = \{y \in X : y = g(x), g \in G\}$.

Definition 2. For *G*, the group of permutations of the set *X*, we denote $G(x \rightarrow y) = \{g \in G : g(x) = y\}.$

The set $G_x = G(x \rightarrow x)$ is called stabilizer of X. It contains all the permutations in G which fix x. It is subgroup of G.

Theorem 1 [1, Theorem 14.2]. Let *G* be the group of permutations of the set *X* and suppose $h \in G(x \rightarrow y)$. Then $G(x \rightarrow y) = hG_x$ is the left coset of the subgroup G_x with respect to *h*.

There is a fundamental relationship between the size of an orbit Gx and the size of the stabilizer G_x .

¹Partially supported by Grant 2016-FPNO-03 at the Angel Kanchev University of Ruse.

Theorem 2 [1, Theorem 14.3]. Let G be the group of permutations of the set X and $x \in X$. Then we have the equation $|Gx| \times |G_x| = |G|$.

We could illustrate the validity of Theorem 2 when G is the group of symmetries of a square, regarded as permutations of the corners labeled by 1,2,3,4 in clockwise direction starting from the left upper corner.

Another form of this group was given in [5].

The eight permutations of the considered group G are listed below:

Identity	id
Clockwise rotation through 90^{0}	(1234)
Clockwise rotation through $180^{ m 0}$	(13)(24)
Clockwise rotation through 270°	(1432)
Reflection in diagonal (13)	(24)
Reflection in diagonal (24)	(13)
Reflection in perpendicular bisector of (12)	(12)(34)
Reflection in perpendicular bisector of (14)	(14)(23)

They form a group, which is a subgroup of S_4 .

The orbit G1 of the corner 1 (say) is the whole set as G contains the permutations id (1 to 1), (1234) (1 to 2), (13)(24) (1 to 3) and (1432) (1 to 4). Thus |G1| = 4. The

stabilizer of 1 is $G_1 = \{id, (24)\}$ and so $|G1| \times |G_1| = 4 \times 2 = 8$, as expected, since there are eight symmetries in all.

Given any group G of permutations of a set X we define, for each g in G, a set

 $F(g) = \{x \in X | g(x) = x\}$. Thus F(g) is the set of objects fixed by g.

Theorem 3 [1, Theorem 14.4]. The number of orbits of G on X is

$$\frac{1}{|G|} \sum_{g \in G} |F(g)|.$$

CYCLE INDEX OF THE GROUP OF PERMUTATIONS

The most important tool in studying the number of distinguishable due to the symmetry colourings of an object is the compact notation giving information about the cycle structures of permutations in a group.

Given any group *G* of permutations of the set $X = \{1, 2, ..., n\}$ for each *g* in *G* we define the type of *g* as the corresponding partition $[1^{\alpha_1}2^{\alpha_2}..n^{\alpha_n}]$ of length *n*, meaning that *g* contains α_1 cycles of length 1, α_2 cycles of length 2,..., α_n cycles of length *n*.

We have $\alpha_1 + 2\alpha_2 + \cdots + n\alpha_n = n$.

We associate with g an expression

$$\zeta_{g}(x_{1}, x_{2}, \dots, x_{n}) = x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} \cdots x_{n}^{\alpha_{n}}$$

where the x_i $(1 \le i \le n)$ are simply formal symbols like the x in a polynomial.

The formal sum of the ζ_{g} , taken over all g in G, is a polynomial in

 x_1, x_2, \dots, x_n . Dividing by |G| we obtain the **cycle index** of the group of permutations:

$$\varsigma_G(x_1, x_2, \dots, x_n) = \frac{1}{|G|} \sum_{g \in G} \varsigma_g(x_1, x_2, \dots, x_n) = \frac{1}{|G|} \sum_{g \in G} x_1^{\alpha_1} x_2^{\alpha_2} \cdots x_n^{\alpha_n}$$

If *G* is the group of symmetries of a square, regarded as permutations of the corners, we give the expressions ς_{e} in the following table:

Thus the cycle index of the group of the square, as considered above, is

$$\frac{1}{8}(x_1^4 + 2x_1^2x_2 + 3x_2^2 + 2x_4), \tag{1}$$

where the terms corresponding to permutations of the same type are collected.

THE NUMBER OF NONEQUIVALENT COLOURINGS

Here we consider the general problem of finding the number of distinguishable colourings when a group of permutations is involved.

An example is the problem of black-and-white colourings of the corners of a square. Since there are two colours and four corners there are basically $2^4 = 16$ possibilities. But when we take account of the symmetry of the square we see that some of the possibilities are essentially the same.

For example the two colourings on Figure 1 are one and the same (the first one is the same as the second one after rotation through 180°).

Fig. 1

Thus we regard two colourings as being indistinguishable if one is transformed into the other by a symmetry of the square.

In this case it is easy to find by trial and error that there just six of them, as shown in Figure 2.

In general, suppose we have a group G of permutations of an n-set X, and to each element of X can be assighted one of r colours. If we denote the set of the colours by K, then a **colouring** is simply a function ω from X to K. There are r^n colourings in all, denoted the set of them by Ω .

Each permutation g in G induces a permutation \overline{g} of Ω in the following way:

Given a colouring ω , we define $\overline{g}(\omega)$ to be the colouring in which the colour assigned to x is the colour ω assigns to g(x), i.e.

$$(g(\omega))(x) = \omega(g(x)).$$

The function taking g to \overline{g} is a representation of G as a group \overline{G} of permutations PROCEEDINGS OF THE UNION OF SCIENTISTS – RUSE VOL. 13 / 2016 51

MATHEMATICS

of Ω . Two colourings are indistinguishable if one of them can be transformed into the other by some permutation \overline{g} , i.e. if they belong to the same orbit of \overline{G} on Ω . Thus the number of distinguishable colourings is just the number of orbits in the action of \overline{G} on Ω .

Proposition 1. The image group \overline{G} is isomorphic to G.

Proof: Suppose that $g_1 = g_2$, i.e. $\omega(g_1(x)) = \omega(g_2(x))$, $\omega \in \Omega$, $x \in X$. Since this equation is true for all ω , it is true in particular for the colouring which assigns a specified colour to $g_1(x)$ and another colour to every other member of X. Thus $g_1(x) = g_2(x)$ and it is true for each $w \in X$, i.e. a

it is true for each $x \in X$, i.e. $g_1 = g_2$.

Thus applying Theorem 3 we get

Theorem 4 [1, Theorem 20.4]. If *G* is a group of permutaions of *X* and $\zeta_G(x_1, x_2, ..., x_n)$ is its cycle index, then the number of inequivalent colourings of *X* with *r* colours available is $\zeta_G(r, r, ..., r)$.

Thus the problem of finding the number of inequivalent colourings when r colours are available can be reduced to the problem of calculating the cycle index. When the cycle index is known, we have only to replace each of $x_1, x_2, ..., x_n$ by r in order to get the result.

Example 1. The number of inequivalent colourings with two colours of the corners of a square is 6.

Solution: The number of inequivalent colourings of the corners of a square is $\frac{1}{8}(r^4 + 2r^3 + 3r^2 + 2r)$, obtained by putting $x_1 = x_2 = x_3 = x_4 = r$ in (1).

When r = 2 we obtain $\frac{1}{8}(2^4 + 2.2^3 + 3.2^2 + 2.2) = 6$, in agreement with Figure 2.

```
MATHEMATICS
```

Example 2. Participants from an university at a sport event are distinguished not, as it is usual, by wearing of numbers, but by rectangular badges made from four pieces of coloured material, as in Figure 3.

Fig. 3

An usual event however for the participants is to pin on their badges upside-down, or back-to-front, or both. If the expected participants are160, what is the smallest number of coloured materials required to make the badges?

Solution: The segments of the badge can be identified with the corners of the rectangle, which we shall label 1,2,3,4 in clockwise order with 1 at the top left.

The relevant group of permutations consists of the permutations:

Correct position	id
Upside-down	(13)(24)
Back-to-front	(12)(34)
Both (u-d, b-f)	(14)(23)

Thus the cycle index for the group of the rectangle is $\frac{1}{4}(x_1^4 + 3x_2^2)$, and the number

of badges with r colours available is $\frac{1}{4}(r^4 + 3r^2)$.

The smallest integer *r* for which $\frac{1}{4}(r^4+3r^2) \ge 160$ is 5, so this is the number of

colours required.

Considering the groups of the symmetries of other plane or surface objects we could form a greater collection of interesting problems connected with colouring of objects.

CONCLUSION

The review is only one example how in additional way (working with the students on projects or theses) we could encourage students to show bigger interest in topics from disciplines in the regular program traditionally being of small interest due to different reasons.

PROCEEDINGS OF THE UNION OF SCIENTISTS - RUSE VOL. 13 / 2016

MATHEMATICS

Colouring of objects is of interest not only for students. It could have future applications in teachers' everyday work with pupils at school as well. Thus what is given here could be continued further on and is of evident significance for future teachers in mathematics.

This work is supported by the Fund "Science Research" under Project 16-FNSE-03."

REFERENCES

[1] Biggs, N.L. DISCRETE MATHEMATICS, Oxford Science Publications, Clarendon Press, Oxford, 1989.

[2] Deskins, W. E. ABSTRACT ALGEBRA, Dover Publications, New York, 1995.

[3] Durbin, J. R. MODERN ALGEBRA, AN INTRODUCTION, John Wiley & Sons, New York, 1992.

[4] Rashkova Ts. ALGEBRA – THEORY AND PROBLEMS, Ruse Univ., 2011 (Bulgarian)

[5] Rashkova Ts. Teaching Group Theory Via Transformations, Proc. of the Union of Scientists – Ruse, b. 5, Mathematics, Informatics and Physics, vol.12, 2015, 38-47.

CONTACT ADDRESSES

Assoc. Prof. Tsetska Rashkova, PhD, Department of Mathematics, Angel Kanchev University of Ruse, 8, Studentska Str., 7017 Ruse, BULGARIA, Phone: (++359 82) 888 489, E-mail: tsrashkova@uni-ruse.bg Nadejda Danova, BSc, Pedagogics in Mathematics and Informatics Angel Kanchev University of Ruse E-mail: <u>n.r.n@abv.bg</u>

ПРИЛОЖЕНИЕ НА СИМЕТРИЧНАТА ГРУПА ПРИ ОЦВЕТЯВАНЕ НА ОБЕКТИ

Цецка Рашкова, Надежда Данова

Русенски университет "Ангел Кънчев"

Резюме: Статията илюстрира как основни идеи от Теория на групите, част от университетски курс по Алгебра в Русенския университет, могат да бъдат разбрани по-добре от студентите при разглеждане подходящи приложения от интерес за обучаемите, а именно някои свойства на симетричната група, приложими при оцветяване на обекти.

Ключови думи: симетрична група, цикличен индекс на група от пермутации, оцветяване на обекти с различни цветове.

54

