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MATHEMATICS

web: suruse.uni-ruse.bq

SIMPLE COMPONENTS OF SEMISIMPLE GROUP ALGEBRAS OF
FINITE P-GROUPS WITH MINIMAL COMMUTANTS

Neli Keranova, Nako Nachev

Agricultural University of Plovdiv, University of Plovdiv

Abstract: Let G be a finite p -group with a commutant of order p and let K be a field of characteristic
different from p. Then the group algebra KG is semisimple and Artinian and, by the classical theorem of
Wederburn-Artin, KG will be decomposed in a direct sum of a finite number matrix rings over skew field. In
this paper we describe the ideal which is generated from any minimal central idempotent e. This ideal is iso-
morphic to a matrix ring over a skew field A with identity e. The central idempotents are described in [5].

The determination of the structure of the mentioned ideal is equivalent to (i) the determination of the
dimension of the matrix ring and (ii) the determination of the skew field A. In this paper we solve the men-
tioned problems (i) and (ii).

Keywords: p-groups, commutants, matrix rings, ideals

INTRODUCTION

In 2004 year Ferraz [2] determines the number of the simple components of a group
algebra FG over a field F, when the characteristic of F does not divide the order of the
group G.

Let K be a real quadratically field and let U be a central division algebra of the qua-
ternions over the field K. In [8] sufficient conditions are given which ensure U to be a
subset of a simple component of the group algebra QG of the finite group G over the

field Q of the rational numbers.
In [1] the authors consider a group G of order p,p,, where p, and p, are prime

and a finite field Fq of g-elements, such that q is relatively prime with P, P,. They con-

struct the set of the primitive central idempotents of the semisimple group algebra Fq[G].
The authors establish the structure of this algebra and its automorphism group.

Ferraz and Milies [3] find a method for the computation of the number of the simple
components of the semisimple finite abelian group algebra and establish all possible cas-
es, when this number is minimal.

Herman, Olteanu and Del Rio [4] consider a finite group G and the finite component
of the rational group algebra QG corresponding to a given character. By this component
the authors investigate the isomorphism of a cyclic cyclotomic algebra.

In this paper we suppose that G is a finite P-group with a commutant of order P

and K is a field of characteristic different from P. For any minimal central idempotent €

of KG we establish the construction of the ideal KGe. This ideal is isomorphic to a matrix
ring over a skew field A with identity €. We determine the dimension of the matrix ring

and the skew field A. For the proof of our two main results we use essentially the con-
cepts of quadratically dependent and quadratically independent field and symplectic pair,
the latter is early defined in [6].

PRELIMINARY RESULTS
Definition 2.1. Let Gbe a finite P -group with a commutator subgroup G'of order p

and C be a generating element of G'. If the equation X" =C has a solution in G and the

IPROCEEDINGS OF THE UNION OF SCIENTISTS — RUSE VOL. 12 / 2015] 7
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k+1
equation X? =C does not have solution in G, then the number pk is called a height of

C in the group G and it is denoted by h,(C)= p. If this equation is considered in the
center Z of the group G then this number is called a height of C in Z and it is denoted
by h, (c) = p*. If h,(c) = p* then either h;(c) = p* or h;(c) = p**™.

Definition 2.2. If h,(C)=h;(C), then the group G is called a group of a central
type. If ph, (c) =h(C), then we will call the group G a group of a non-central type.

Definition 2.3. Let G be a finite P-group and let G' have order P. Suppose, that C
is a generating element of G'. Let A:{al,az,...,as,bl,bz,...,bs,Cl,CZ,...,Cr} be a system
of generating elements of G, which has the following properties:

1. For every i€{l2,..,s} it holds: &'0.a =hC,, and all other elements of A

commute together. -

2. If G is of a central type, then the cyclic group <C, > contains G' and the cyclic
subgroup, which are generated from other generating elements, does not con-
tain G'. If the group G is of a non-central type and either p=2 or h;(C) >4,
then the cyclic group <bl > contains G' and the other cyclic subgroups, which
are generated from A, do not contain G'. If the group Gis of a non-central type,
p=2and h;(C) =2, then <b, > contains G' and at most one of the subgroups
<a;,b, > is isomorphic to the quaternions group of order eight.

3. Any element of the group G is represented uniquely as a product
fﬂi[]i[a“jbfﬂciv , Where the exponents «,,f3,,7, take values from O to the or-
A=1 p=1 v=1
der of the corresponding coset in the factor group G/G', with the exception of
the element C, for a group of central type and the element bl for a group of a
non-central type. In this case the exponents take values from O to the order of C;
(to the order of bl respectively). Then we will say, that the elements
a,8,,.,4a,,0,h,,...,0.C,C,,...,C, form a symplectic basis of the group G.

Exactly the third property entitles us to call it a basis, since by these elements we ob-

tain unique representation of the elements of G.
Definition 2.4. [6] We will say, that the elements a,beG form a symplectic pair

(a,b), if the following conditions hold:

1. [b,a]=c, where G'=<C>;

2. the element @ has a minimal order in the coset aC; (D)

3. the element b has a minimal order in the coset bC; (a).

Definition 2.5. If the idempotent €, corresponds to the identity character of G' in
K(G/G"), then the central idempotent of KG, which is a continuation of the idempotent
€,, Is called an idempotent of the first type. If the idempotent €, corresponds to non-

identity character of KZ, then the central idempotent of KG, which is a continuation of
the idempotent €, is called an idempotent of the second type.

IPROCEEDINGS OF THE UNION OF SCIENTISTS — RUSE VOL. 12 / 2015] 8
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Definition 2.6. Let ¥ be a character of an abelian group. Then we denote by K(y)
the extension of the field K, which is obtained by the joining of the value of the character
X

Definition 2.7. Let K be a field of characteristic, different from two. We call the field
K a quadratically dependent field, if the equation X*+ Yy +1=0 has a solution in K.

Otherwise we call it a quadratically independent field.

Examples:

The fields R and Q are quadratically independent fields, since the indicated equation
does not have a solution in these fields.

The field C is obviously a quadratically dependent field.

Any finite field of characteristic, different from two, is a quadratically dependent (we
can easily prove that the indicated equation has always a solution).

Definition 2.8. Let € be a minimal central idempotent of KG of second type with a
corresponding character y and let (a,b) be a symplectic pair belonging to a symplectic

basis of the group G. Then we define an algebra A(a,b) over the field K(y), corre-
sponding to the symplectic pair (a,b), by the following way: a basis of A(a,b) will be the

various products a'b’, where i, | 6{0,1,2,..., p—l}. We define the multiplication in the
algebra A(a,b) by: (aiijailbjl):a”ilb’.“'lcjil v e{O,ZLZ,..., p—l}, where G'=<C>
and taking into consideration that a,b® e K(y).

Theorem 2.9. Let € be a minimal central idempotent of second type of the algebra
KG, which corresponds to a character ¥ and B is a symplectic basis of the group G,
such that the non-central elements of B are distributed in the following symplectic pairs:
(a,h),....,(a,,b,). Then the ideal KGe, which is regarded as an algebra with identity €,
is represented as a tensor product by the following way:

KGe=A(a,,b)e®, ,, A@,,b,)e®, , ..., Ala,b)e. (1)

Proof. Forany I, j € {1,2,...,8} the dimension of the algebra A(a,b.)e over K(y) is

2 2s

p-.
a“bazbl:..a%b’, where oy, B,....c, B, €{01,...,p—1}, are a basis of KGe and the
number of these basis elements is also pzs. Therefore, the tensor product and the ideal

KGe have the same dimension and the multiplication of the basis elements is accom-
plished by an identical way. Hence (1) holds.

It remains to clarify the structure of any algebra, which is included in (1).

Lemma 2.10. Let K be a field of characteristic, different from two and let A be the
guaternions  algebra  over K with  a  basis 1Lab,ab with rela-

tions: a2 =—1,b* =—1ba=-ab. Then the algebra A is isomorphic to M(2,K), if and

only if, the field K is a quadratically dependent field. The quaternions algebra is a skew
field with a dimension 4, if and only if, Kis a quadratically independent field.
Proof. Let K be a quadratically dependent field. Consequently, the equation

X* +Y* +1=0 has a solution in K . Consider the correspondences:

a—>0 1 b—>X y 1—)1 O_Thenab—> y _X.
-1 0) y —=Xx) 01 -X =Y

IPROCEEDINGS OF THE UNION OF SCIENTISTS — RUSE VOL. 12 / 2015] 9
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These matrices fulfill the relations, which satisfy the elements @ and b. Hence, this
correspondences can be continue by a linearly to a homomorphism of A in |\/|(2, K). It

remains to prove, that this homomorphism is an isomorphism. Since 1,a,b and ab form a
basis of A, then the images of these elements will form a basis of the algebra M (2,K), if

we prove, that these images are linear independent. Suppose, that the indicated images
are linear dependent, i.e. there exists a linear combination of above four matrixes with co-

efficients A;,4,,4, and A,, such that this combination is equal to the zero matrix. Then we
obtain the following system:

A+ x+4,y=0
A+ 4y-14,x=0
AL+ A4Yy-4,x=0
A —Ax=4,y=0

The coefficients determinant before the unknowns in this system is equal to -4, i.e. it
is different from zero. Hence, the system has only a zero solution. Consequently, the given
matrixes are linear dependent. If K is a quadratically dependent field, then A= M (2,K).

Conversely, if A=M(2,K), then we will prove, that the field K is a quadratically
dependent field. The isomorphism A= M (2, K) implies that the images of the basis ele-
ments of A will be some matrices, which satisfy the same relations. Let

a _)(al &, j b _)(ﬂl 5 j ab_)(alﬂl +a,f o _azﬂl)
o3 —Oo B —h ap-af; of+af
Then we obtain the system:
o +a,a, +1=0
ﬂ12+,82:83 +1=0 ,
2003, + iy + a5, =0
since @ +1=0, b* +1=0, (ab)* +1=0.

I at least one of the elements a,,a, 3, and f; is equal to zero, then the equation

x> +y2 +1=0 has a solution. Therefore, the field K is a quadratically dependent field.

Further we will suppose, that these elements are different from zero. By a simple calcula-
tions we obtain, that K is a quadratically dependent field.

Let Kis a quadratically independent field. We will prove that A is isomorphic to a
skew field of the quaternions. Let x:/1a+yb+vab is an element from A (since X must

to be a non-zero element, then at least one A, and v is different from zero). Then
2

x? ==} —,u2 —v?and x? #0, because K is a quadratically independent field. The ele-
ment X is invertible, since X*#0 and by a division of the last equality with
_ X
~ X —u*—v®, we obtain X
P2 _,Uz — 2
X=q, +oga+a,b+a,ab, such that at least one o, @, and a,is different from zero.
We have prove, that X is invertible. We take an another element y=a, +¢,a and we

=1. Now we take an arbitrary element

IPROCEEDINGS OF THE UNION OF SCIENTISTS — RUSE VOL. 12 / 2015] 10
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calculate that Xy = (¢t + ¢ )a+aa,b+ (—aya, + o, —aya)ab. In this expression at
least one of the coefficients before a,b and ab must be different from zero. The coeffi-
cient before a is o +af . Suppose ¢ +af =0. However &, #0. Therefore, we can

2
divide the last equality with ag. We obtain E—lj +1=0, which is a contradiction, since
Oy

K is a quadratically independent field. Consequently, Xy is an invertible element. Hence,

X is an invertible element. Therefore, A is a skew field.
Conversely, let A is isomorphic to the skew field D of the quaternions. Suppose, that
K is a quadratically dependent field. We obtain, from above proved, that A= M (2,K).

However, in the other hand, A= D, which is a contradiction, since in the skew field of the
quaternions there are no zero divisors while in M (2, K) there are zero divisors. Hence,

our assumption is not true. Therefore, K is a quadratically independent field. The lemma
IS proved.
The skew field from Lemma 2.10 is called a skew field of the quaternions over K.

Lemma 2.11. Let(a,b) be a symplectic pair of the basis of the group Gand let € be

a minimal central idempotent of KG of the second type, which corresponds to the charac-
ter y. Let at least one of the following conditions be fulfilled:

1. p#2;

2. K(p)#=K;

3. K is a quadratically dependent field;

4. the key subgroup of G/ Kery is non-isomorphic to Q.

Then the algebra A(a,b)e is isomorphic to M(p, K(y)).
Proof.  The  pair (a,b) is a  symplectic  pair.  Therefore,

a” =1b" =l a'ba=bc,ac=cabc=ch, where ¢ is a generating element of the
commutant G' of the group G. Applying the character y, we obtain that K(y) will be

imbedded in A(a,b) such that its image be generated from a’e,b’e and ce. These ele-
ments generate the field K(y), i.e. there exists an imbedding ¢: K(y) — A(a,b), such
that y(@”)=g¢,, where g is a root of the identity and K<n-1. we have
(@Pe)” =ae=e, y(b?)=¢,t<m-1. Let, for example, K<t. Then & =g°

Hence apezgtp‘fk. We take pP'*-th degree of the last equality and obtain
p(0" "e)=g” . Then aPeb” "e=1 and ¢((@b ™ )Pe)=1. Consequently, the
symplectic pair (ab_ptfk ,b) will generate a new symplectic pair and we can suppose, that

p(afe) =1, p(b’e) =&,,t <m—1. We consider now the following idempotents:

1 _int-1 _2int-1 —(n_1\int-1 _ -
e :_(1+b Parb @ ..+ b PP P 1)| e{012,...,p-1}
p
We introduce the following notation: €; —e.b? D for aPeb” “e=1. One can

eikljzl
0,j=I

IPROCEEDINGS OF THE UNION OF SCIENTISTS — RUSE VOL. 12 / 2015] 11
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1p-1
It remains to prove, that €; are linear independent. We consider iiaueﬁ =0.
i=0 j=0

We multiply this equality on the left with and on the right with and we obtain:

1p-1

iiaijelileijejlk =0.

i=0 j=0
By the definition of €;€,, we have summands, which are distinct from zero only if

i, =1 and J, = ]. Therefore ;6; =0. However ¢; #0, since &; #0. Therefore ¢; =0

for every apebptfkﬂe =1. Consequently, we have a linear independent. Hence, we obtain
A(a,b)e=M(p,K(y)), since we have p-idempotents e, over K(y).

Lemma 2.12. Let (a,b) be a symplectic pair, which satisfies the conditions:

1. p=2;

2. K(y)=K;

3. K is a quadratically independent field;

4. the key subgroup of G/Keryis isomorphic to Q.

Then A(a,b)e = D, where D is a skew field of the quaternions.

Proof. The conditions of the lemma imply that K(;() is a quadratically independent

field and @* €Z. Then @’ e K(y). But K(¥) =K and a* will be a root of the identity.

The element @ can not be the fourth and a heigher root of the identity, since K is a quad-
ratically independent field and, therefore, in K there is not such a root. The element a’
coincides with G' and since the idempotent € is of the second type, then (C)=-1 and
a’e=ce=—¢. Consequently a’e=-¢. Analogously, we obtain b%e =—€. Besides we
have a'bae=bce=-be, bae=—-abe (be)(ae) =—(ae)(be), (ae)> =—¢, (be)* =—¢.

Therefore, the algebra A(a,b)e is isomorphic to the quaternions algebra. Since K is
a quadratically independent field, then by Lemma 2.11, we obtain A(a,b)ex=D.

MAIN RESULTS
Theorem 3.1. Let € be a minimal central idempotent of KG of the first type and let
¥ be its corresponding character, which continues the identity character of KG'. Then the

ideal KGe is isomorphic to the field K(y).

Proof. We have KG'e, =K. Then KGe= K(G/G'). Since K(G/G') is an abeli-
an group, then K(G/G")e= K(y) (it follows from the theory of the commutative group
algebra).

Theorem 3.2. Let K be a field of characteristic different from pand let Gbe a p-
group with a commutant of order P. Suppose, that € is a minimal central idempotent of
KG of the second type and y is the corresponding character of € Then for the ideal

KGe of KG the following cases hold:
A) If at least one of the following conditions is fulfilled:
1) p#2;
2) K(x) = K;

IPROCEEDINGS OF THE UNION OF SCIENTISTS — RUSE VOL. 12 / 2015] 12
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3) K is a quadratically independent field;
4) the key subgroup of G/Keryis isomorphic to Q;,

then KGe is isomorphic to the matrix ring M (n,K(y)),where K(y) is the field of the

G
character y.,and N= u
|Z]
B) If the following conditions are fulfilled:
1) p=2;
2) K(x)=K;

3% K is a quadratically independent field;
4’) the key subgroup of G/ Keryis isomorphic to Q;,

then KGe=M(n,D), where D is the skew field of the quaternions over K and
1 |G|
n==_|—.
2\[Z]
Proof.
Case A. We have KGe= A(a,,h)e®,,, A@,,b,)e®, , ...80, A& b)e.
On the other hand we use lemma 2.12 for all factors. We obtain
A(a,,b)e=M(p,K(y)). We know from [7, Consequence b, p.211] that

M(n,L)®, M(m,L)=M(nmL). Therefore,
KGe= A3, b)e @y Ay 0,6 @y Oy Ala,b)e = M(p*, K(2) =M(n K(2),

[C]
|Z]
Case B. We have KGe= A(a,,0)e®,,, A@,,b,)e®, ..., A& b)e.

Lemma 2.12 implies, that we have A(g;,l,)e = D exactly for one factor and all other
factors are isomorphic to M (2, K), which are S—1. We have

KGe=D®, M(2,K)®, ..®, M(2,K).

Again, from [7, Consequence b, p.211], we obtain

KGe= A(a,,h)e®, ) A@,,b,)e®,, ... By, Aa,,b,)e=D® M(2°* K).
We have D®, M(2°*,K)=M(2°*,D).

Since 2° = Gl ,then 2°7! _1 [C] . The proof is completed.
VI Z| 2\|Z|
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