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Abstract: Signal processing in living organisms is a challenging interdisciplinary scientific area that 

roots through physiology and brings together efforts of biologists, chemists, physicists, mathematicians, 
engineers and computer scientists. Successful treatment of mental disorders and artificial intelligence are 
amongst the broad range of possible applications. 

In this article, different mathematical models for nerve signal propagation are reviewed including the 
famous electrical model of Hodgkin and Huxley, and the more recent thermodynamic model of Heimburg and 
Jackson.  
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INTRODUCTION 
Neurons are electrically excitable cells that maintain voltage gradients across their 

membranes due to the concentration differences of ions such as sodium (Na+), potassium 
(K+), chloride (Cl¯) and calcium (Ca2+) between the inside (intracellular) and outside 
(extracellular) region. The value of the potential difference in the absence of activity at the 
neuron's dendrites and axon, known as the resting potential of the cell is typically about –
65 mV referenced to the fluid surrounding the neuron. Most neurons can be stimulated by 
their inputs into producing a large change in the membrane potential (up to about +20 mV) 
for a brief period of time (about 1 ms). The electrochemical pulse called the action 
potential travels rapidly along the cell’s axon, and activates synaptic connections with 
other neurons. The membrane at rest is polarized since the resting potential is negative 
with respect to the outer tissue fluid of the extracellular region. Raising the membrane 
potential toward zero volts is called depolarization. 

The molecular structure and organization of the neuronal membrane play a 
significant role in understanding biological signal processing. Most of the membrane is 
composed of the phospholipid bilayer which is assumed impermeable to water and to the 
major ions Na+, K+, Ca2+, and Cl¯. Thus, it acts as an electrical insulator to current flow by 
these ions. The membrane also contains numerous proteins that span the membrane wall 
from cytoplasm (interior of the neuron) to the extracellular region, and form pores or 
channels that allow or block current flow of particular types of ions. In the open state they 
are permeable to the passage of their specific ions, while in the closed state they are 
impermeable to the same ions. For some of these proteins the open or closed state of the 
channel is determined by the electric potential difference (voltage) across the cell 
membrane and they are called voltage-gated channels. For other proteins, the so-called 
ligand-gated channels, the open or closed state depends on the binding of a 
neurotransmitter molecule at a receptor site on the extracellular side of the membrane. 

The model by Hodgkin and Huxley [HH] from 1952 on the physiology of the squid 
giant axon is the currently accepted model for the nerve pulses. It gives an electrical 
description of the action potential based on conductors (ion channels) and on a capacitor 
(the lipid membrane). However, during the pulse propagation other phenomena have been 
observed such as physical expansion of nerves and exertion by a force normal to the 
membrane surface, reversible heat production and the absence of net heat release, 
changes in anisotropy and fluorescence of the lipid membrane probes, etc. [HJ1, HJ2, 
AJH, VLHGJH]. All of these features that accompany an action potential could not be 
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explained by the ionic currents. In the recent works of Heimburg and Jackson [HJ1, HJ2, 
AJH, VLHGJH] a revised view of the action potential is proposed based on the laws of 
thermodynamics and the assumption that membrane lipids play a fundamental role in the 
propagation of nerve pulses. The authors describe how pulses propagating in nerve 
membranes resemble propagating sound waves and give a thermodynamic explanation of 
the effect of anesthetics and the induction of action potentials by local nerve cooling, as 
well as a broad range of phenomena associated with a propagating nerve pulse. 

The relevance of the extended Fisher—Kolmogorov equation to nerve signaling has 
been discussed in the last section of this paper, however further study is necessary to 
elucidate this possibility. 

 
THE HODGKIN-HUXLEY MODEL 
Following the book of R. Wells [W], let [X]i and [X]o denote the concentration (in 

moles per liter) inside the cell and in the extracellular region of the ion X, respectively. 
Then the voltage VX representing the potential difference in concentrations [X]i and [X]o is 
given by the Nernst potential  
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Here k = 1.38066⋅10-23 joules/kelvin is the Boltzmann constant, T is the absolute 
temperature in kelvin, z in the valence, and e, the elementary charge, is the charge carried 

by a single proton (e = 1.60219⋅10-19 coulombs). In the model by Hodgkin and Huxley 
[HH], the membrane potential, Vm, is determined by contributions from all the Nernst 
potentials and is dependent on the permeability of the membrane (the electric 
conductance) for each different type of ion. Thus, Hodgkin and Huxley find Vm using an 
electric circuit model.  

 

 
Fig.1 The Hodgkin & Huxley electric circuit model, [HH] 

 
 By common convention, the electric potential in the extracellular region is taken as 

the reference ground potential and the cytoplasmic electric potential is measured relative 
to this ground. Hence, the membrane potential Vm represents the total electric potential 
difference across the wall of the membrane. The storage of free ions within the cytoplasm 
is represented by a circuit element called a capacitor. The capacitance C relates the total 
charge Q (in coulombs) of the stored ions to the membrane voltage according to  

 

mCVQ  . 

 
The value of C depends only on the thickness of the membrane, its surface area, and 

its composition of phospholipids and proteins. A typical capacitance value per unit area of 
cell surface is about 1 μF/cm2 HH]. 
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The batteries in the figure represent the electrochemical Nernst potentials for each 
type of ion. Battery Vlk , the so-called ‘leakage potential’ is used to model unidentified ionic 
constituents of the system. Although frequently associated with chloride ions, in fact Vlk 
and its associated conductance Glk are used to account for unknowns encountered in 
physiological studies. 

The effect of non-zero permeability on the flow of ion currents is represented through 
the various conductors depicted in the figure. By Ohm's law, ion current flow through a 
conductor is proportional to the voltage difference across the conductor, namely 

  

 mXXX VVGI  . 

 
Here GX represents the conductance of ion X. The horizontal lines added to the 

conductor symbols in Figure 1 denote that their conductance values are voltage-
dependent. This is because GNa and GK in this figure represent voltage-gated sodium and 
potassium ion channels. The leakage conductance is generally not membrane-voltage-
dependent, thus the lack of a horizontal line in the lk conductor symbol. Current sources 
INa and IK represent the action of the molecular pumps that maintain the resting cell in its 
electrochemical equilibrium.  

The basic law governing the relationship between Vm and the Nernst potentials is 
Kirchhoff's current law: The sum of the currents leaving any node in a circuit equals zero. 
In the case of Figure 1, Kirchhoff's law elucidates how charge accumulates on the 
capacitor. For the membrane capacitor,  
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dV
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dQ
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Using this capacitor law and applying Kirchhoff's law gives us  
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Further, since the sodium and potassium terms in the above equation are time 

functions, the ion concentrations can be expressed by the steady-state concentrations and 
the time variation in concentrations due to current supplied by the pumps. For the sodium 
potential, this expression can be written  
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where [ΔNa+] > 0 is the change in Na+ concentrations as a function of time due to current 
flow from the sodium pump. The first term in the sum on the right-hand side is the 
equilibrium potential of the battery, denoted as ENa. The second term represents the 
change in battery voltage, ΔVNa, that would take place from charge pumping. Because the 
pump current INa replenishes the battery, in steady-state equilibrium GNa ΔVNa – INa = 0. A 
similar result is obtained for the potassium pump. Using EK to represent the equilibrium 
potential for potassium given by the Nernst equation, the differential equation is rewritten 
as 

 

      lkmlkKmKNamNa
m VVGEVGEVG

dt

dV
C  . (1) 
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Hodgkin and Huxley [HH] had discovered the existence of two distinct types of 
voltage-gated ion channels whose conductance was a function of Vm. Today they are 
known as transient channels (Na+) and persistent channels (K+). A transient channel has 
two ion gates, the activation gate on the outer side of the membrane, and the inactivation 
gate on the inner side. Accordingly, this channel has three states: (1) deactivated 
(activation gate closed, inactivation gate open); (2) activated (both gates open); and (3) 
inactivated (inactivation gate closed). A persistent channel has only two states, activated 
and deactivated, because it has only one gate. 

The Hodgkin and Huxley statistical model of channel conductance holds that 
individual channel gates open or close independently of one another (but as a function of 
membrane voltage) in a probabilistic fashion. Let πo and πc denote the probability a gate is 
open or closed, respectively. By the convention πo + πc = 1, or πc = 1 – πo. The rate at 
which closed gates transition to an open state is governed by a rate constant, α, which has 
units of 1/time and is a function of membrane voltage but not of time. The rate at which 
open gates transition to the closed state is governed by another rate constant, β. The 
probability of a gate being in the open state is then governed by the first-order rate 
equation  
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Let n denote the open probability of the potassium channel, and the constant gK 

denote the maximum potassium channel conductance. By empirical experiments, Hodgkin 
and Huxley found they could express the K+ channel conductance as  

4.ngG KK  . 

 
Furthermore, let the open probability for the activation gate of the sodium channel be 

denoted by the symbol m, and the open probability for the inactivation gate be denoted by 
the symbol h. The sodium channel conductance is a function of both m and h. Letting gNa 
denote the maximum sodium channel conductivity, Hodgkin and Huxley found the 
empirical expression for the sodium channel conductance to be 

 

hmgG NaNa
3. . 

 
The complete Hodgkin-Huxley model [HH] consists of the differential equation (1) for 

the circuit of Figure 1 and the three differential equations describing the rate processes. 
Summarizing the four model equations, we get 
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 (2) 

 
Equations (2) are coupled through the dependence of the rate “constants” 

hhmmnn  ,,,,,  on Vm and the dependence of the conductances GX on the 



MATHEM ATICS  

P R O C E E D I N G S  O F  T H E  U N I O N  O F  S C I E N T I S T S  –  R U S E  V O L .  14  /  2017  45 

probabilities n, m, and h. Thus the system represented by equations (2) is equivalent to a 
representation in terms of a fourth-order nonlinear ordinary differential equation. 

Nowadays, after the pioneering work of Nobel laureates Hodgkin and Huxley [HH], 
many more different ion channels, pumps and exchangers are known, as well as their 
applications to cardiac cells and the roles of ionic currents in arrhythmia mechanisms, [NR, 
SWPWB, HVVR, PG].  

 
THE THERMODYNAMIC MODEL BY HEIMBURG AND JACKSON  
As various authors have noted, action potentials are accompanied by reversible 

mechanical dislocations, changes in volume and temperature, and changes in 
fluorescence, turbidity, and birefringence. In particular, data indicate that heat release is 
exactly in phase with the action potential, and that there is no net heat release after 
completion of the action potential, (cf. [HJ1, HJ2, AJH, VLHGJH] and references therein). 
As pointed out in [HJ1], the isentropic behavior of the nerve pulse is considered in 
Hodgkin’s book [H], where it is noted that the heat release and absorption response during 
the action potential are important but not understood.  

In a series of papers from 2005 to 2011 T. Heimburg and A. Jackson have proposed 
a new thermodynamic approach towards deeper understanding of the nerve pulse 
propagation. Their electromechanical description based on thermodynamics allows for 
correct predictions of many of the observed properties of nerve signal propagation such as 
the change in  

membrane potential, the reversible heat, the induction of axon potentials through 
local nerve cooling, the physical expansion of nerves during the action potential, and the 
action of anesthetics. 

Careful studies on the structure of lipid biomembranes show that such lipids display 
melting transitions at a specific temperature where both the lateral and chain order of the 
lipid molecules are lost. The low and high temperature phases are called solid-ordered and 
liquid-disordered, respectively, indicating the simultaneous change in lateral crystalline 
arrangement and chain order. They are also known as gel and fluid phase, respectively. In 
the order–disorder transitions membranes absorb heat while the transition from lipid fluid 
to gel state is associated with the release of heat. Body temperature (for bacteria: the 
growth temperature) is slightly above that of the lipid melting transition. 

When the nerve membrane is subjected to a propagating action potential, a region of 
the membrane is compressed locally and forced through the transition from fluid to gel 
state. This increases the local density of the medium and creates a wave. As the 
membrane can be considered a long and narrow cylinder, lipid membranes thus have the 
properties required for the generation and propagation of solitons. A soliton is a self-
reinforcing solitary wave that maintains its shape while it travels at a constant speed along 
the membrane. Solitons can propagate over extended distances without loss of energy. 
The soliton model for nerve pulse propagation proposed by Heimburg and Jackson [HJ1] 
suggests that action potentials cause a transient transition of the membrane from fluid to 
gel state with the associated production of latent heat and the reabsorption of an identical 
quantity of heat as the system returns to the fluid state. Heimburg and Jackson [HJ1] also 
suggest that the action potentials consist of propagating density pulses and show that 
stable propagating density pulses in cylindrical lipid membranes can be obtained provided 
that the membrane exists in a physical state slightly above the melting transition.  

Following [HJ1], let us denote by )(0 TH , )(0 TV  and )(0 TA  the temperature-

dependent enthalpy, specific volume and specific area of the gel phase respectively, and 
let )(TH , )(TV  and )(TA  be the excess of these parameters associated with the 

melting transition. It has been found experimentally that the volume and area changes in 
the chain melting transition are proportional to the changes in enthalpy  
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with constants of proportionality AV  ,  approximately the same for various artificial lipids 

and for biological membranes, [EGH]. Since the heat capacity ( Pc ), the isothermal volume 

compressibility ( V
T ) and the lateral compressibility ( A

T ) are related to fluctuations in 

enthalpy, volume, and area, using the fluctuation dissipation theorem Heimburg and 
Jackson have obtained the elastic constants as functions of the heat capacity  
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Here V
T 0,  and A

T 0,  are the compressibility constants outside of the transition range.  

The adiabatic compressibilities relevant for sound propagation can be determined 
from the isothermal compressibilities. Using Maxwell’s relations one can show that 
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It has been found experimentally and theoretically that the adiabatic compressibility is 

in general frequency dependent [HJ1]. Since the sound propagation velocity in elastic 
media is expressed as function of the adiabatic compressibility by 

A
S

A
c
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where A  is the lateral area density, the sound velocity is frequency dependent and hence 

dispersion occur in the lipid melting transition.  
On the other hand, close to the melting transition Heimburg and Jackson [HJ1] have 

shown that A
S  depends sensitively on temperature and therefore also on density. Both the 

liquid and gel phases are relatively incompressible. Heimburg and Jackson have shown 
that at densities near the phase transition where the two phases co-exist, a small increase 
in pressure can cause a significant increase in density by converting liquid to gel. Near this 

phase transition, the compression modulus (the reciprocal of A
S ) is dramatically smaller. 

Thus the sound velocity, c, can be approximated as 
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with 0,0  qp  and A
S

Ac 00 /1 is the velocity of small amplitude sound. 

As the lipid membrane can be interpreted as long and narrow cylinder, the sound 
propagation along the membrane is considered only in one dimension, x. The 
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hydrodynamic equation for the propagation of such a density pulse in the presence of 
dispersion is given by  
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describing the changes of the lateral membrane density AAA
0   ( A

0  is the lateral 

area density in the fluid phase of the membrane) as a function of time and space. Here the 

dispersive effects discussed above are introduced by a dispersive term, A

x
h 





4

4

 with 

0h . The propagating solitons are examined of the form )(zA  with txz   and are 

solutions of the fourth-order ODE 
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satisfying 0 A  as z . 

 
THE EXTENDED FISHER—KOLMOGOROV EQUATION 
Many biological structures exhibit liquid-crystal behavior. In particular, biological 

membranes and cell membranes are a form of liquid crystal [CXZ]. These liquid crystal 
membrane phases can also host important proteins such as receptors freely “floating” 
inside, or partly outside, the membrane. 

The anisotropy of liquid crystals causes them to exhibit birefringence. That is, light 
that enters the crystal is broken up into two oppositely-polarized rays that travel at different 
velocities. Observation of a birefringent material between crossed polarizing filters reveals 
striking patterns and color effects. 

The liquid crystals in a nematic phase are composed of rod-like molecules with the 
long axes of neighboring molecules aligned approximately to one another. The description 
of this anisotropic structure involves an analysis of order. An order parameter is used to 
describe the orientational order of a nematic liquid crystal and the distinction between 
phases in equilibrium in thermodynamic processes [U].  

Kolmogorov, Petrovskii and Piskunov [KPP] in 1937 proposed a nonlinear second-
order diffusion equation as a model for the spread of a successful gene within a natural 
biological population. In the field of spatial pattern formation this equation, later known as 
Fisher—Kolmogorov equation (FK), is the prototype equation for the study of front 
propagation in bistable systems. The FK equation represents a bistable system with two 
spatially homogeneous stable states at 1  and an unstable state at 0. In the extended 
Fisher—Kolmogorov equation (EFK) 
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originating from the studies of phase transitions near critical points, the bistabe dynamics 
remain. EFK has been proposed by Dee and Van Saarloos [DS] who have showed that 
fronts propagating into an unstable state can dynamically create a periodic array of kinks. 
These kinks separate large regions in which the system is essentially in one of the two 
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stable states. The pattern behind the front is rather different from those found in 
instabilities.  

As discussed in [DS], examples of such behavior occur in the dynamics of fronts near 
the Fréedericksz transition in liquid crystals. This is the effect of deformation in liquid 
crystals due to the application of an electric field. Let us consider the case where liquid 
crystal molecules are aligned parallel to the cell surface and an electric field is applied 
perpendicular to the cell. At first, as the electric field increases in magnitude, no change in 
alignment occurs. However at a threshold magnitude of electric field, deformation occurs 
where the molecules change its orientation from one molecule to the next. The occurrence 
of such a change from an aligned to a deformed state is called a Fréedericksz transition. 

The author suggests that the processes discussed in the last section are relevant to 
the nerve signal processing but at this stage further study is necessary. 
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МАТЕМАТИЧЕСКО МОДЕЛИРАНЕ НА ПОТЕНЦИАЛА НА 
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Резюме: Обработката на сигнали при живите организми е предизвикателна 

интердисциплинарна област с корени във физиологията и свързва усилията на биолози, химици, 
физици, математици, инженери и компютърни специалисти. Успешното лечение на ментални 
увреждания и изкуствения интелект са в големия диапазон на възможните приложения. 

В тази статия се представят различни математически модели при разпространението на 
нервни импулси като известния електричен модел на Ходжкин-Хаксли, както и съвременния 
термодинамичен модел на Хеймбург и Джаксън.  

Ключови думи: невронна мембрана, йонен канал, потенциал на действието, модел на 
Ходжкин-Хаксли, липиди, преход при топене, термодинамика. 
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