PROCEEDINGS
of the Union of Scientists - Ruse

Book 5
Mathematics, Informatics and Physics

Volume 12, 2015

RUSE
EDITORIAL BOARD

Editor in Chief
Prof. Zlatojivka Zdravkova, PhD

Managing Editor
Assoc. Prof. Tsetska Rashkova, PhD

Members
Assoc. Prof. Petar Rashkov, PhD
Prof. Margarita Teodosieva, PhD
Assoc. Prof. Nadezhda Nancheva, PhD

Print Design
Assist. Prof. Victoria Rashkova, PhD

Union of Scientists - Ruse
16, Konstantin Irechek Street
7000 Ruse
BULGARIA
Phone: (++359 82) 828 135,
(++359 82) 841 634
E-mail: suruse@uni-ruse.bg
web: suruse.uni-ruse.bg

Contacts with Editor
Phone: (++359 82) 888 738
E-mail: zzdravkova@uni-ruse.bg

PROCEEDINGS of the Union of Scientists – Ruse
ISSN 1314-3077
Proceedings
of the Union of Scientists – Ruse

Contains five books:

1. Technical Sciences
2. Medicine and Ecology
3. Agrarian and Veterinary Medical Sciences
4. Social Sciences
5. Mathematics, Informatics and Physics
BOARD OF DIRECTORS OF THE US - RUSE
1. Prof. Hristo Beloev, DSc – Chairman
2. Assoc. Prof. Vladimir Hvarchilkov – Vice-Chairman
3. Assoc. Prof. Teodor Iliev – Secretary in Chief

SCIENTIFIC SECTIONS WITH US - RUSE
1. Assoc. Prof. Aleksandar Ivanov – Chairman of “Machine-building Sciences and Technologies” scientific section
2. Prof. Ognjan Alipiev – Chairman of “Agricultural Machinery and Technologies” scientific section
3. Assoc. Prof. Ivan Evtimov– Chairman of "Transport" scientific section
4. Assoc. Prof. Teodor Iliev – Chairman of "Electrical Engineering, Electronics and Automation" scientific section
5. Assist. Prof. Diana Marinova – Chairman of "Agrarian Sciences” scientific section
6. Svilen Dosev, MD – Chairman of "Medicine and Dentistry" scientific section
7. Assoc. Prof. Vladimir Hvarchilkov – Chairman of "Veterinary Medical Sciences" scientific section
8. Assist. Prof. Anton Nedjalkov – Chairman of "Economics and Law" scientific section
9. Assoc. Prof. Tsetska Rashkova – Chairman of "Mathematics, Informatics and Physics” scientific section
10. Assoc. Prof. Ljubomir Zlatev – Chairman of "History” scientific section
11. Assoc. Prof. Rusi Rusev – Chairman of "Philology” scientific section
12. Prof. Penka Angelova, DSc – Chairman of "European Studies” scientific section
13. Prof. Antoaneta Momchilova - Chairman of "Physical Education, Sport and Kinesiterapy” section

CONTROL PANEL OF US - RUSE
1. Assoc. Prof. Jordanka Velcheva
2. Assoc. Prof. Nikolai Kotsev
3. Assist. Prof. Ivanka Dimitrova

EDITOR IN CHIEF OF PROCEEDINGS OF US - RUSE
Prof. Zlatojivka Zdravkova
The Ruse Branch of the Union of Scientists in Bulgaria was founded in 1956. Its first Chairman was Prof. Stoyan Petrov. He was followed by Prof. Trifon Georgiev, Prof. Kolyo Vasiliev, Prof. Georgi Popov, Prof. Mityo Kanev, Assoc. Prof. Boris Borisov, Prof. Emil Marinov, Prof. Hristo Beloev. The individual members number nearly 300 recognized scientists from Ruse, organized in 13 scientific sections. There are several collective members too – organizations and companies from Ruse, known for their success in the field of science and higher education, or their applied research activities. The activities of the Union of Scientists – Ruse are numerous: scientific, educational and other humanitarian events directly related to hot issues in the development of Ruse region, including its infrastructure, environment, history and future development; commitment to the development of the scientific organizations in Ruse, the professional development and growth of the scientists and the protection of their individual rights.

The Union of Scientists – Ruse (US – Ruse) organizes publishing of scientific and popular informative literature, and since 1998 – the “Proceedings of the Union of Scientists- Ruse”.

CONTENTS

Mathematics

Neli Keranova, Nako Nachev

Simple components of semisimple group algebras of finite P-groups with minimal commutants

Evelina Veleva

Marginal densities of the wishart distribution corresponding to cycle graphs

Ivan Georgiev, Juri Kandilarov

Immersed interface finite element method for diffusion problem with localized terms

Veselina Evtimova

Exploring the possibilities for A timely provision of service to patients at an emergency medical aid centre

Tsetska Rashkova

Teaching group theory via transformations

Stefka Karakoleva, Ivan Georgiev, Slavi Georgiev, Pavel Zlatarov

Results from computer mathematics education for motivated students at Ruse University

Informatics

Valentin Velikov, Mariya Petrova

Subsystem for graphical user interfaces creating

Victoria Rashkova

Data protection with digital signature

Desislava Baeva

Translating a SQL application data to semantic Web

Kamelia Shoylekova

Information system “Kanef centre”

Rumen Rusev

Software system for digital analysis of fingernail imprints in forensic medicine

Metodi Dimitrov

Daily life applications of the modular self reconfigurable robots

Galina Atanasova

The critical thinking essence and its relationship with algorithm thinking development

Galina Atanasova

Critical thinking skills improvement via algorithmic problems

Georgi Dimitrov, Galina Panayotova

Aspects of Website optimization
Physics
Galina Krumova...114
An approach to description of monopole excitations in nuclei

Nikolay Angelov...120
Influence of speed and frequency of process laser marking
of products of structural steel

Nikolay Angelov...125
Determination of working intervals of power density and
frequency for laser marking on samples from steel HS18-0-1

Applications
Valerij Dzhurov...131
Radiolocation parameter determination of blasting materials
IMMERSED INTERFACE FINITE ELEMENT METHOD FOR DIFFUSION PROBLEM WITH LOCALIZED TERMS

Ivan Georgiev, Juri Kandilarov

Angel Kanchev University of Ruse

Abstract: In this paper we consider the diffusion problem with local own source. A weak formulation of it is done and then the immersed interface finite element method (IIFEM) is applied for the numerical solution. For discretization in time it is used Rothe’s method with weights, and then the special basis functions, which fulfill the jump conditions on the interface, are introduced. Numerical results, confirming second order of accuracy in maximum norm, are presented.

Keywords: immersed interface, finite element method, diffusion equation, local sources, Rothe’s method

INTRODUCTION

Let us consider the following parabolic problem with discontinuous coefficients and local own source:

\[u_t(x,t) - (\beta u_x(x,t))_x + q(x,t)u(x,t) = f(x,t) - g(u(x,t))\delta(x-x_0) \quad (x,t) \in Q_T = \Omega \times (0,1] \]

with initial and boundary conditions

\[u(x,0) = u_0(x), \]
\[u(0,t) = u_L(t), \quad u(1,t) = u_R(t). \]

Here \(\Omega = (0,1) \), the functions \(q, f \) and \(g \) are continuous in \(\overline{Q_T} \setminus \Gamma_T \), \(\Gamma_T = \{\zeta\} \times [0,1] \), \(\delta \) is the Dirac-delta function, \(0 < \zeta < 1 \) and \(\beta \) is piecewise continuous of the form

\[\beta(x) = \begin{cases}
\beta^-(x), & 0 \leq x \leq \zeta, \\
\beta^+(x), & \zeta \leq x \leq 1.
\end{cases} \]

Under some assumption of smoothness of the solution the problem (1)-(2) can be rewritten in the classical way [9] as follows:

\[u_t(x,t) - (\beta u_x(x,t))_x + q(x,t)u(x,t) = f(x,t) \quad (x,t) \in Q_T = \Omega \times (0,1]) \]

with initial and boundary conditions (2) and jump conditions on the interface \(\Gamma_T \)

\[[u(x,t)]_{x=\zeta} = u(\zeta^+, t) - u(\zeta^-, t) = 0 \]
\[[\beta u_x(x,t)]_{x=\zeta} = \beta^+ u_x(\zeta^+, t) - \beta^- u_x(\zeta^-, t) = g(u(\zeta^+, t)) \]
tence and uniqueness of the variety of elliptic and parabolic interface problems are discussed in the book [9]. Special difference schemes for such problems are considered [4].

In this paper the IIFEM is applied for the proposed problem. IIFEM for interface problems with homogeneous interface conditions, or jump conditions, that are known functions, have been studied in [5-7]. In our problem the jump of the flux at the interface depends on the unknown solution. For elliptic problems of this type an IIFEM is studied in [2].

The paper is organized as follows. In the next section the weak formulation of the problem is given. Then using Rothe’s method combined with the method of weights the semi-discretization in time is done. IIFEM is applied for approximation in space. Numerical experiments are presented in the last section.

WEAK FORMULATION OF THE PROBLEM

Let for simplicity consider the case of linear own source, i.e. \(g(u(x,t)) = K(t)u(x,t) \), where \(K(t) > 0, \forall t \in [0,1] \) is a continuous function.

Let introduce the usual Sobolev space \(H^1(0,1) \), the bilinear form

\[
a(u,v) = \int_0^1 (\beta(x)u'_x(x,t)v'(x) + q(x,t)u(x,t)v(x)\,dx + K(t)u(\zeta,t)v(\zeta,t) \tag{5}
\]

and linear form

\[
b(f,v) = \int_0^1 f(x,t)v(x)\,dx. \tag{6}
\]

With \((u_t(x,t),v) = \int_0^1 u_t(x,t)v(x)\,dx \) we denote the inner product in the space \(L^2(0,1) \).

Then, the weak solution of the problem (3), (4) is the function \(u \in H^1(0,1), \forall t \in (0,1) \), such that

\[
(u_t,v) + a(u,v) = b(f,v) \quad \forall v \in H^1(0,1), \tag{7}
\]

and \(u(x,t) \) satisfies the conditions in (2).

Using energetic method, see Chapter 1 of [9], it has been proved that if \(u_0(x), q, f \in L^2(0,1) \), then the solution of (3)-(4) is unique \(u \in H^1(0,1), \forall t \in (0,1) \) satisfying the weak problem (7).

METHOD OF WEIGHTS

Let introduce an uniform mesh in the time \(t \in [0,1] \) with constant time step \(\tau = 1/M \), \(t_m = m\tau, \ m=0,\ldots,M \), where \(M \) is a positive integer. Let also with \(z_m(x) \) denote the numerical approximation of \(u(x,t_m) \) on the \(m \)-th time layer \(m=1,\ldots,M \), and \(\sigma, \sigma \in [0,1] \) is a weight. Then the semi-discretization of the problem in time [8] looks as follows:
\[
\frac{z_m(x) - z_{m-1}(x)}{\tau} - (\sigma f z_m(x))' - (1-\sigma) q(x, t_m) z_m(x) + (1-\sigma) q(x, t_{m-1}) z_{m-1}(x) \\
= \sigma f(x, t_m) + (1-\sigma) f(x, t_{m-1}) - \sigma \delta(x-\zeta) K(t_m) z_m(x) - (1-\sigma) \delta(x-\zeta) K(t_{m-1}) z_{m-1}(x), \quad x \in (0,1)
\]

for \(m=1,\ldots,M \), initial and boundary conditions

\[
\begin{align*}
 u(x,0) &= z_0(x) = u_0(x), \\
 u(0,t_m) &= z_m(0) = u_J(t_m), \\
 u(1,t_m) &= z_m(1) = u_R(t_m),
\end{align*}
\]

and jump conditions on the interface

\[
[z_m(x)]_{x=\zeta} = z_m(\zeta^+) - z_m(\zeta^-) = 0,
\]

\[
[\beta z_m(x)]_{x=\zeta} = \beta^+ \frac{\partial z_m}{\partial x}(\zeta^+) - \beta^- \frac{\partial z_m}{\partial x}(\zeta^-) = K(t_m) z_m(\zeta).
\]

IMMERSED INTERFACE FINITE ELEMENT METHOD

Next we introduce uniform mesh in space direction \(x, \ x_i = ih, i = 0,\ldots,N, \) with \(h = 1/N \). Let \(J \) be the number, for which \(x_j \leq \zeta < x_{J+1} \). Let \(c_i^m \) are the unknown coefficients at \(x_i \) and \(t_m \). Then from the idea of the FEM the numerical solution on every time layer \(m \) is a linear combination \(z^h_m = \sum_{i=0}^{N} c_i^m \phi_i(x) \) of standard basic functions \(\phi_i \), \(i \neq J, i \neq J+1 \):

\[
\phi_i(x) = \begin{cases}
\frac{x - x_{i-1}}{h}, & x_{i-1} \leq x < x_i \\
\frac{x_{i+1} - x}{h}, & x_i \leq x \leq x_{i+1} \\
0, & \text{elsewhere}
\end{cases}
\]

and two modified basis functions \(\phi_J \) and \(\phi_{J+1} : \)

\[
\phi_J(x) = \begin{cases}
0, & 0 \leq x < x_{J-1} \\
\frac{x - x_{J-1}}{h} \alpha_1 x + \beta_1, & x_{J-1} \leq x < x_J \\
\frac{x_J - x}{h} \alpha_1 x + \beta_1, & x_J \leq x < \zeta \\
\frac{x - x_{J+1}}{h} \alpha_2 x + \beta_2, & \zeta \leq x < x_{J+1} \\
\frac{x_{J+1} - x}{h} \alpha_2 x + \beta_2, & x_{J+1} \leq x \leq 1
\end{cases}
\]

\[
\phi_{J+1}(x) = \begin{cases}
0, & 0 \leq x < x_J \\
\frac{x - x_J}{h} \alpha_1 x + \beta_1, & x_J \leq x < \zeta \\
\frac{x - x_{J+1}}{h} \alpha_2 x + \beta_2, & \zeta \leq x < x_{J+1} \\
\frac{x_{J+1} - x}{h} \alpha_2 x + \beta_2, & x_{J+1} \leq x \leq 1
\end{cases}
\]
The coefficients α_{ij} and β_{ij}, $i, j = 1, 2$ must satisfy the following systems of linear algebraic equations (SLAE)

\[
\begin{align*}
| \alpha_{11} x_j + \beta_{11} &= 1 \\
| \alpha_{12} x_{j+1} + \beta_{12} &= 0 \\
| \alpha_{12} \xi + \beta_{12} - \alpha_{11} \xi - \beta_{11} &= 0 \\
| \alpha_{12} - \alpha_{11} &= K(\alpha_{11} \xi + \beta_{11})
\end{align*}
\]

and

\[
\begin{align*}
| \alpha_{21} x_j + \beta_{21} &= 0 \\
| \alpha_{22} x_{j+1} + \beta_{22} &= 1 \\
| \alpha_{22} \xi + \beta_{22} - \alpha_{21} \xi - \beta_{21} &= 0 \\
| \alpha_{22} - \alpha_{21} &= K(\alpha_{21} \xi + \beta_{21})
\end{align*}
\]

Its solutions are:

\[
\begin{align*}
\alpha_{11} &= -\frac{1 + K \rho_i + x_{j+1}}{h + K \rho_i \rho_{i+1}}, \quad \beta_{11} = \frac{K \zeta \rho_i + x_{j+1}}{h + K \rho_i \rho_{i+1}}, \quad \alpha_{12} = -\frac{1}{h + K \rho_i \rho_{i+1}}, \quad \beta_{12} = \frac{x_{j+1}}{h + K \rho_i \rho_{i+1}} \\
\alpha_{21} &= \frac{1}{h + K \rho_i \rho_{i+1}}, \quad \beta_{21} = -\frac{x_j}{h + K \rho_i \rho_{i+1}}, \quad \alpha_{22} = \frac{1 + K \rho_i}{h + K \rho_i \rho_{i+1}}, \quad \beta_{22} = -\frac{K \zeta \rho_i + x_j}{h + K \rho_i \rho_{i+1}} \\
\rho_i &= \zeta - x_j, \quad \rho_{i+1} = x_{j+1} - \zeta.
\end{align*}
\]

In what follows, instead of $(,)$ for the scalar product we will use the notation \langle , \rangle, i.e. $<u, v> = \int_0^1 uv \, dx$. Then we multiply the semi-discrete equation (8) by the test function $v \in H^1(0,1)$, and integrating by parts with respect to x we get for $j = 1, ..., N$:

\[
\begin{align*}
&\langle \sum_{m=0}^N \sigma \beta_i^m \phi_i^m, \phi_j^m \rangle + \langle \sum_{m=0}^N (1 + \sigma \xi) \beta_i^{m-1} \phi_i^{m-1}, \phi_j^m \rangle + \langle \sum_{m=0}^N (\sigma K(t_m) \xi) \phi_i^m(\zeta) \rangle \phi_j^m(\zeta) = \\
&\langle \sum_{m=0}^N \frac{1}{t} c_i^{m-1} \phi_i^m, \phi_j^m \rangle - \langle \sum_{m=0}^N (1 - \sigma) \beta_i^{m-1} \phi_i^{m-1}, \phi_j^m \rangle + \langle \sum_{m=0}^N (1 - \sigma) q \beta_i c_i^{m-1} \phi_i^{m-1}, \phi_j^m \rangle + \\
&\langle \sigma f(x, t_m), \phi_j^m \rangle + \langle (1 - \sigma) f(x, t_m), \phi_j^m \rangle = -\sum_{m=0}^N (1 - \sigma) K(t_{m-1} c_i^{m-1} \phi_i^{m-1}(\zeta) \phi_j^m(\zeta).
\end{align*}
\]

This SLAE can be presented in the matrix form as

\[
(A^1 + A^2 + A^3) c^m = (B^1 + B^2 + B^3 + B^4) c^{m-1} + (D^1 + D^2),
\]

where $c^{m-1} = (c_0^{m-1}, c_1^{m-1}, ..., c_N^{m-1})^T$ and $c^m = (c_0^m, c_1^m, ..., c_N^m)^T$ are vectors of the solution on the two consecutive time layers, with $C^0 = (c_0^0, c_1^0, ..., c_N^0)^T$, $c_i^0 = u_0(x_i)$, $c_0^m = u(0,t_m)$, $c_N^m = u(1,t_m)$ - initial and boundary conditions. The elements of the other matrices are as follows:
\[
A_i^j = \begin{cases}
0 & i \neq j, i \neq j \pm 1 \\
\sigma \int_{x_{i-1}}^{x_i} \beta^-(x) \phi_i^m(x) \phi_j^m(x) \, dx & i = j \pm 1 \text{ or } i = j, \text{ and } i < J \\
\sigma \int_{x_{i-1}}^{x_i} \beta^+(x) \phi_i^m(x) \phi_j^m(x) \, dx & i = j \pm 1 \text{ or } i = j, \text{ and } i > J + 1
\end{cases}
\]

\[
A_j^i = \begin{cases}
0 & i \neq j, i \neq j \pm 1 \\
\int_{x_{i-1}}^{x_i} \left(\frac{1}{\tau} + \alpha^-(x, t_m) \right) \phi_i^m(x) \phi_j^m(x) \, dx & i = j \pm 1 \text{ or } i = j, \text{ and } i < J \\
\int_{x_{i-1}}^{x_i} \left(\frac{1}{\tau} + \alpha^+(x, t_m) \right) \phi_i^m(x) \phi_j^m(x) \, dx & i = j \pm 1 \text{ or } i = j, \text{ and } i > J + 1
\end{cases}
\]

\[
A_{ij}^3 = \begin{cases}
\sigma K(t_m) \phi_j^m(\zeta) \phi_j^m(\zeta) & i = J, j = J \\
\sigma K(t_m) \phi_j^m(\zeta) \phi_j^m(\zeta) & i = J, j = J + 1 \\
\sigma K(t_m) \phi_j^m(\zeta) \phi_j^m(\zeta) & i = J + 1, j = J \\
\sigma K(t_m) \phi_j^m(\zeta) \phi_j^m(\zeta) & i = J + 1, j = J + 1 \\
0 & \text{other cases}
\end{cases}
\]
\[
B_{ij}^1 = \begin{cases}
0 & i \neq j, i \neq j \pm 1 \\
\int_{x_{j-1}}^{x_j} \frac{1}{\tau}(\phi_j^{m-1}(x)\phi_j^m(x))dx & i = j \pm 1 \text{ or } i = j, \text{ and } i < J \\
\int_{x_{j-1}}^{x_j} \frac{1}{\tau}(\phi_j^{m-1}(x)\phi_j^m(x))dx & i = j \pm 1 \text{ or } i = j, \text{ and } i > J + 1
\end{cases}
\]

\[
B_{ij}^2 = \begin{cases}
-\left(1 - \sigma\right) \int_{x_{j-1}}^{x_j} \beta^-(x)\phi_j^{m-1}(x)\phi_j^m(x)'dx & i = j \pm 1 \text{ or } i = j, \text{ and } i < J \\
-\left(1 - \sigma\right) \int_{x_{j-1}}^{x_j} \beta^+(x)\phi_j^{m-1}(x)\phi_j^m(x)'dx & i = j \pm 1 \text{ or } i = j, \text{ and } i > J + 1
\end{cases}
\]

\[
B_{ij}^3 = \begin{cases}
0 & i \neq j, i \neq j \pm 1 \\
\left(1 - \sigma\right) \int_{x_{j-1}}^{x_j} q^-(x, t_{m-1})\phi_j^{m-1}(x)\phi_j^m(x)dx & i = j \pm 1 \text{ or } i = j, \text{ and } i < J \\
\left(1 - \sigma\right) \int_{x_{j-1}}^{x_j} q^+(x, t_{m-1})\phi_j^{m-1}(x)\phi_j^m(x)dx & i = j \pm 1 \text{ or } i = j, \text{ and } i > J + 1
\end{cases}
\]

\[
B_{ij}^4 = \begin{cases}
\left(1 - \sigma\right) \int_{x_{j-1}}^{x_j} q^-(x, t_{m-1})\phi_j^{m-1}(x)\phi_j^m(x)dx & i = j \pm 1 \text{ or } i = j, \text{ and } i < J \\
\left(1 - \sigma\right) \int_{x_{j-1}}^{x_j} q^-(x, t_{m-1})\phi_j^{m-1}(x)\phi_j^m(x)dx & i = j \pm 1 \text{ or } i = j, \text{ and } i > J + 1
\end{cases}
\]
\[B^4_{ij} = \begin{cases}
- (1 - \sigma) K(t_{m-l}) \phi_j^{m-1}(\zeta) \phi_j^m(\zeta) & i = J, j = J \\
- (1 - \sigma) K(t_{m-l}) \phi_j^{m-1}(\zeta) \phi_j^{m+1}(\zeta) & i = J, j = J + 1 \\
- (1 - \sigma) K(t_{m-l}) \phi_j^{m+1}(\zeta) \phi_j^{m+2}(\zeta) & i = J + 1, j = J \\
- (1 - \sigma) K(t_{m-l}) \phi_j^{m+1}(\zeta) \phi_j^{m+2}(\zeta) & i = J + 1, j = J + 1 \\
0 & \text{other cases}
\end{cases} \]

\[\begin{align*}
D^1_i &= \begin{cases}
\sigma \int_{x_{i-1}}^{x_i} f^-(x,t_m) \phi_j^m dx + \sigma \int_{x_i}^{x_{i+1}} f^+(x,t_m) \phi_j^m dx & i = J \\
\sigma \int_{x_{i-1}}^{x_i} f^-(x,t_m) \phi_j^m dx + \sigma \int_{x_i}^{x_{i+1}} f^+(x,t_m) \phi_j^m dx & i = J + 1
\end{cases} \\
D^2_i &= \begin{cases}
(1 - \sigma) \int_{x_{i-1}}^{x_i} f^-(x,t_{m-1}) \phi_j^m dx & i \neq J, i \neq J + 1, i < J \\
(1 - \sigma) \int_{x_{i-1}}^{x_i} f^+(x,t_{m-1}) \phi_j^m dx & i \neq J, i \neq J + 1, i > J + 1 \\
(1 - \sigma) \int_{x_{i-1}}^{x_i} f^-(x,t_{m-1}) \phi_j^m dx + (1 - \sigma) \int_{x_i}^{x_{i+1}} f^+(x,t_{m-1}) \phi_j^m dx & i = J \\
(1 - \sigma) \int_{x_{i-1}}^{x_i} f^-(x,t_{m-1}) \phi_j^m dx + (1 - \sigma) \int_{x_i}^{x_{i+1}} f^+(x,t_{m-1}) \phi_j^m dx & i = J + 1
\end{cases}
\]

The matrices \(A^3 \) and \(B^4 \) correspond to the corrections, results of the \(\delta \)-Dirac function.

NUMERICAL EXPERIMENTS

As a test problem we consider

\[u_r(x,t) - (\beta u_x(x,t))_x = -\delta(x - \zeta) K u(x,t) \quad (x,t) \in (0,1) \times (0,1), \]

with initial and boundary conditions

\[u(x,0) = u_0(x) = \begin{cases}
\cos(x/\sqrt{\beta^-}) & 0 \leq x \leq \zeta \\
\cos(\zeta/\sqrt{\beta^-}) & \sin(x/\sqrt{\beta^+}) \\
\sin(\zeta/\sqrt{\beta^+}) & \zeta < x \leq 1
\end{cases} \]

\[u(0,t) = u_L(t) = \frac{\exp(-t)}{\cos(\zeta/\sqrt{\beta^-})}, \quad u(1,t) = u_R(t) = \frac{\sin(1/\sqrt{\beta^+})\exp(-t)}{\sin(\zeta/\sqrt{\beta^+})}. \]
The function $K(t)$ for this problem is a constant $K = \sqrt{\beta^+ \tg\left(\frac{\zeta}{\sqrt{\beta^+}}\right)} + \sqrt{\beta^- \ctg\left(\frac{\zeta}{\sqrt{\beta^-}}\right)}$.

The jump conditions are:

$$[u(x,t)]_{x=\zeta} = u(\zeta^+,t) - u(\zeta^-,t) = 0,$$
$$[\beta u_x(x,t)]_{x=\zeta} = \beta^+ u_x(\zeta^+,t) - \beta^- u_x(\zeta^-,t) = K(t)u(\zeta,t) = Ku(\zeta,t).$$

The exact solution is

$$u(x,t) = \begin{cases}
\cos(x/\sqrt{\beta^+}) \exp(-t), & 0 \leq x \leq \zeta \\
\cos(\zeta/\sqrt{\beta^+}) \\
\sin(x/\sqrt{\beta^+}) \exp(-t), & \zeta < x \leq 1.
\end{cases}$$

In Table 1 the results for the parameters $\sigma = 1/2, \zeta = \pi/6, K = \sqrt{\beta^+ \tg\left(\frac{\zeta}{\sqrt{\beta^+}}\right)} + \sqrt{\beta^- \ctg\left(\frac{\zeta}{\sqrt{\beta^-}}\right)}$ are presented. We choose two different cases for the discontinuous coefficients $\beta^- = 10, \beta^+ = 1$ and $\beta^- = 1, \beta^+ = 10$. The error of the numerical solution in maximum norm for different N and M is denoted by $\|e^M_N\|_\infty = \max\{|u(x, t) - z^h_m(x)|\}$, and the rate of convergence is by $\text{rate} = \log_2(\frac{\|e^M_N\|_\infty}{\|e^{2M}_N\|_\infty})$. The results confirm that the method is of second order on space and time for the case of $\sigma = 1/2$, when the method of weights is known as Crank-Nicolson method.

In Figure 1 the exact solution and the error of the numerical solution for $N = M = 40$ and $\beta^- = 1, \beta^+ = 10, \sigma = 1/2, \zeta = \pi/6$ are presented.

Table 1. The numerical results for $\sigma = 1/2, \zeta = \pi/6, K = \sqrt{\beta^+ \tg\left(\frac{\zeta}{\sqrt{\beta^+}}\right)} + \sqrt{\beta^- \ctg\left(\frac{\zeta}{\sqrt{\beta^-}}\right)}$

<table>
<thead>
<tr>
<th>N</th>
<th>M</th>
<th>$\beta^- = 10, \beta^+ = 1$</th>
<th>$\beta^- = 1, \beta^+ = 10$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>$|e^M_N|_\infty$</td>
<td>rate</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>0.000367</td>
<td>-</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>8.3325e-5</td>
<td>2.1418</td>
</tr>
<tr>
<td>20</td>
<td>20</td>
<td>1.6931e-5</td>
<td>2.2990</td>
</tr>
<tr>
<td>40</td>
<td>40</td>
<td>4.0763e-6</td>
<td>2.0543</td>
</tr>
<tr>
<td>80</td>
<td>80</td>
<td>1.0141e-6</td>
<td>2.0070</td>
</tr>
<tr>
<td>160</td>
<td>160</td>
<td>2.5325e-7</td>
<td>2.0015</td>
</tr>
<tr>
<td>320</td>
<td>320</td>
<td>6.3306e-8</td>
<td>2.0001</td>
</tr>
</tbody>
</table>
Many other numerical experiments with different values of the coefficients have been done. All of them confirm the following proposition:

Proposition: If the assumptions for the coefficients and functions are fulfilled, then the proposed IIFEM in the case $\sigma = 1/2$ is of second order both in space and time, i.e. for the error of the numerical solution of (9), (10) and (11) z_m^h the estimate

$$\left\| z_m^h - u \right\|_{\infty} \leq C(h^2 + \tau^2)$$

holds, where the constant C does not depend on h and τ.

CONCLUSION

In this work we investigate the application of the IIFEM for a parabolic problem with local own sources on some interface, embedding in the domain. For the numerical solution we use method of weights and FEM with special basic functions satisfying the jump conditions on the interface. Second order of convergence in the case $\sigma = 1/2$ is numerically proved. The theoretical proof of the proposition and application of ODE solvers of Matlab are object of our forthcoming work.

ACKNOWLEDGEMENTS

This paper is supported by University of Ruse under Project 2015-FPHHC-03 and Project 2015-FNSE-03.

REFERENCES

CONTACT ADDRESSES
Assist. Ivan Georgiev
Department of Applied Mathematics and Statistics
Faculty of Public Health and Health Care
Angel Kanchev University of Ruse
8 Studentska Str.,
7017 Ruse, Bulgaria
Phone: (++359 82) 888 424
E-mail: irgeorgiev@uni-ruse.bg

Assoc. Prof. Juri Kandilarov, PhD
Department of Mathematics
Faculty of Natural Sciences and Education
Angel Kanchev University of Ruse
8 Studentska Str.,
7017 Ruse, Bulgaria
Phone: (++359 82) 888 634
E-mail: ukandilarov@uni-ruse.bg

ВЛОЖЕН ИНТЕРФЕЙСЕН МЕТОД НА КРАЙНИТЕ ЕЛЕМЕНТИ ЗА УРАВНЕНИЕ НА ДИФУЗИЯТА С ЛОКАЛЕН ИЗТОЧНИК

Иван Георгиев, Юрий Кандиларов
Русенски университет “Ангел Кънчев”

Резюме: В статията се разглежда уравнение на дифузията с локален собствен източник. Дефинирана е слаба формулировка на задачата и е приложен вложен интерфейсен метод на крайните елементи за численото решаване на проблема. При дискретизацията по време е използван метод на Роте с тела. След това са въведени специални базисни функции, които удовлетворяват условията на скока на решението и потока върху интерфейс. Представени са численi експерименти, които потвърждават втори ред на точност в максимална норма.

Ключови думи: вложен интерфейс, метод на крайните елементи, уравнение на дифузията, локални източници, метод на Роте
Requirements and guidelines for the authors -
"Proceedings of the Union of Scientists - Ruse"
Book 5 Mathematics, Informatics and Physics

The Editorial Board accepts for publication annually both scientific, applied research and methodology papers, as well as announcements, reviews, information materials, adds. No honoraria are paid.
The paper scripts submitted to the Board should answer the following requirements:
1. Papers submitted in English are accepted. Their volume should not exceed 8 pages, formatted following the requirements, including reference, tables, figures and abstract.
2. The text should be computer generated (MS Word 2003 for Windows or higher versions) and printed in one copy, possibly on laser printer and on one side of the page. Together with the printed copy the author should submit a disk (or send an e-mail copy to: vkr@ami.uni-ruse.bg).
3. Compulsory requirements on formatting:
 - font - Ariel 12;
 - paper Size - A4;
 - page Setup - Top: 20 mm, Bottom: 15 mm, Left: 20 mm, Right: 20mm;
 - Format/Paragraph/Line spacing - Single;
 - Format/Paragraph/Special: First Line, By: 1 cm;
 - Leave a blank line under Header - Font Size 14;
 - Title should be short, no abbreviations, no formulas or special symbols - Font Size 14, centered, Bold, All Caps;
 - One blank line - Font Size 14;
 - Name and surname of author(s) - Font Size: 12, centered, Bold;
 - One blank line - Font Size 12;
 - Name of place of work - Font Size: 12, centered;
 - One blank line;
 - abstract – no formulas - Font Size 10, Italic, 5-6 lines ;
 - keywords - Font Size 10, Italic, 1-2 lines;
 - one blank line;
 - text - Font Size 12, Justify;
 - references;
 - contact address - three names of the author(s) scientific title and degree, place of work, telephone number, Email - in the language of the paper.
4. At the end of the paper the authors should write:
 - The title of the paper;
 - Name and surname of the author(s);
 - abstract; keywords.
Note: The parts in item 4 should be in Bulgarian and have to be formatted as in the beginning of the paper.
5. All mathematical signs and other special symbols should be written clearly and legibly so as to avoid ambiguity when read. All formulas, cited in the text, should be numbered on the right.
6. Figures (black and white), made with some of the widespread software, should be integrated in the text.
7. Tables should have numbers and titles above them, centered right.
8. Reference sources cited in the text should be marked by a number in square brackets.
9. Only titles cited in the text should be included in the references, their numbers put in square brackets.
The reference items should be arranged in alphabetical order, using the surname of the first author, and written following the standard. If the main text is in Bulgarian or Russian, the titles in Cyrillic come before those in Latin. If the main text is in English, the titles in Latin come before those in Cyrillic. The paper cited should have: for the first author – surname and first name initial; for the second and other authors – first name initial and surname; title of the paper; name of the publishing source; number of volume (in Arabic figures); year; first and last page number of the paper. For a book cited the following must be marked: author(s) – surname and initials, title, city, publishing house, year of publication.
10. The author(s) and the reviewer, chosen by the Editorial Board, are responsible for the contents of the materials submitted.
Important for readers, companies and organizations
1. Authors, who are not members of the Union of Scientists - Ruse, should pay for publishing of materials.
2. Advertising and information materials of group members of the Union of Scientists – Ruse are published free of charge.
3. Advertising and information materials of companies and organizations are charged on negotiable (current) prices.

Editorial Board