PROCEEDINGS

of the Union of Scientists - Ruse

Book 5

Mathematics, Informatics and Physics

Volume 12, 2015

RUSE

PROCEEDINGS
 OF THE UNION OF SCIENTISTS - RUSE

EDITORIAL BOARD

Editor in Chief

Prof. Zlatojivka Zdravkova, PhD

Managing Editor

Assoc. Prof. Tsetska Rashkova, PhD

Members

Assoc. Prof. Petar Rashkov, PhD
Prof. Margarita Teodosieva, PhD
Assoc. Prof. Nadezhda Nancheva, PhD
Print Design
Assist. Prof. Victoria Rashkova, PhD
Union of Scientists - Ruse
16, Konstantin Irechek Street
7000 Ruse
BULGARIA
Phone: (++359 82) 828 135,
(++359 82) 841634
E-mail: suruse@uni-ruse.bg
web: suruse.uni-ruse.bg

Contacts with Editor

Phone: (++359 82) 888738
E-mail: zzdravkova@uni-ruse.bg

PROCEEDINGS

of the Union of Scientists - Ruse

Proceedings

of the Union of Scientists - Ruse

Contains five books:

1. Technical Sciences
2. Medicine and Ecology
3. Agrarian and Veterinary Medical Sciences
4. Social Sciences
5. Mathematics, Informatics and Physics

BOARD OF DIRECTORS OF THE US - RUSE

1. Prof. Hristo Beloev, DSc - Chairman
2. Assoc. Prof. Vladimir Hvarchilkov - Vice-Chairman
3. Assoc. Prof. Teodor lliev - Secretary in Chief

SCIENTIFIC SECTIONS WITH US - RUSE

1. Assoc. Prof. Aleksandar Ivanov - Chairman of "Machine-building Sciences and Technologies" scientific section
2. Prof. Ognjan Alipiev - Chairman of "Agricultural Machinery and Technologies" scientific section
3. Assoc. Prof. Ivan Evtimov- Chairman of "Transport" scientific section
4. Assoc. Prof. Teodor lliev - Chairman of "Electrical Engineering, Electronics and Automation" scientific section
5. Assist. Prof. Diana Marinova - Chairman of "Agrarian Sciences" scientific section
6. Svilen Dosev, MD - Chairman of "Medicine and Dentistry" scientific section
7. Assoc. Prof. Vladimir Hvarchilkov - Chairman of "Veterinary Medical Sciences" scientific section
8. Assist. Prof. Anton Nedjalkov - Chairman of "Economics and Law" scientific section
9. Assoc. Prof. Tsetska Rashkova - Chairman of "Mathematics, Informatics and Physics" scientific section
10. Assoc. Prof. Ljubomir Zlatev - Chairman of "History" scientific section
11. Assoc. Prof. Rusi Rusev - Chairman of "Philology" scientific section
12. Prof. Penka Angelova, DSc- Chairman of "European Studies" scientific section
13. Prof. Antoaneta Momchilova - Chairman of "Physical Education, Sport and Kinesiterapy" section

CONTROL PANEL OF US - RUSE

1. Assoc. Prof. Jordanka Velcheva
2. Assoc. Prof. Nikolai Kotsev
3. Assist. Prof. Ivanka Dimitrova

EDITOR IN CHIEF OF PROCEEDINGS OF US - RUSE

Prof. Zlatojivka Zdravkova

> The Ruse Branch of the Union of Scientists in Bulgaria was founded in 1956. Its first Chairman was Prof. Stoyan Petrov. He was followed by Prof. Trifon Georgiev, Prof. Kolyo Vasilev, Prof. Georgi Popov, Prof. Mityo Kanev, Assoc. Prof. Boris Borisov, Prof. Emil Marinov, Prof. Hristo Beloev. The individual members number nearly 300 recognized scientists from Ruse, organized in 13 scientific sections. There are several collective members too - organizations and companies from Ruse, known for their success in the field of science and higher education, or their applied research activities. The activities of the Union of Scientists - Ruse are numerous: scientific, educational and other humanitarian events directly related to hot issues in the development of Ruse region, including its infrastructure, environment, history and future development; commitment to the development of the scientific organizations in Ruse, the professional development and growth of the scientists and the protection of their individual rights.

> The Union of Scientists Ruse (US - Ruse) organizes publishing of scientific and popular informative literature, and since 1998 - the "Proceedings of the Union of Scientists- Ruse".

BOOK 5
 "MATHEMATICS, INFORMATICS AND PHYSICS"

CONTENTS

Mathematics

Neli Keranova, Nako Nachev 7
Simple components of semisimple group algebras of finite P- groups with minimal commutants
Evelina Veleva 15
Marginal densities of the wishart distribution corresponding to cycle graphs
Ivan Georgiev, Juri Kandilarov 23
Immersed interface finite element method for diffusionproblem with localized termsVeselina Evtimova33
Exploring the possibilities for A timely provision of service to patients at an emergency medical aid centre
Tsetska Rashkova 38
Teaching group theory via transformations
Stefka Karakoleva, Ivan Georgiev, Slavi Georgiev,Pavel Zlatarov48
Results from computer mathematics education for motivatedstudents at Ruse University
Informatics
Valentin Velikov, Mariya Petrova 58
Subsystem for graphical user interfaces creating
Victoria Rashkova 66
Data protection with digital signature
Desislava Baeva 75
Translating a SQL application data to semantic Web
Kamelia Shoylekova 80
Information system "Kaneff centre"
Rumen Rusev 85
Software system for digital analysis of fingernail imprints inforensic medicine
Metodi Dimitrov. 90
Daily life applications of the modular self reconfigurable robots
Galina Atanasova 94The critical thinking essence and its relationship withalgorithm thinking developmentGalina Atanasova99
Critical thinking skills improvement via algorithmic problems Georgi Dimitrov, Galina Panayotova 106
Aspects of Website optimization

	Physics
BOOK 5	Galina Krumova.. 114
	An approach to description of monopole excitations in nuclei
	Nikolay Angelov.. 120
"MATHEMATICS, INFORMATICS AND PHYSICS"	Influence of speed and frequency of process laser marking of products of structural steel
	Nikolay Angelov... 125
	Determination of working intervals of power density and frequency for laser marking on samples from steel HS18-0-1
VOLUME 12	Applications
	Valerij Dzhurov \qquad 131 Radiolocation parameter determination of blasting materials

web: suruse.uni-ruse.bg

IMMERSED INTERFACE FINITE ELEMENT METHOD FOR DIFFUSION PROBLEM WITH LOCALIZED TERMS

Ivan Georgiev, Juri Kandilarov

Angel Kanchev University of Ruse

Abstract

In this paper we consider the diffusion problem with local own source. A weak formulation of it is done and then the immersed interface finite element method (IIFEM) is applied for the numerical solution. For discretization in time it is used Rothe's method with weights, and then the special basis functions, which fulfill the jump conditions on the interface, are introduced. Numerical results, confirming second order of accuracy in maximum norm, are presented.

Keywords: immersed interface, finite element method, diffusion equation, local sources, Rothe's method

INTRODUCTION

Let us consider the following parabolic problem with discontinuous coefficients and local own source:

$$
\begin{equation*}
u_{t}(x, t)-\left(\beta u_{x}(x, t)\right)_{x}+q(x, t) u(x, t)=f(x, t)-g(u(x, t)) \delta(x-\zeta) \quad(x, t) \in Q_{T}=\Omega \times(0,1] \tag{1}
\end{equation*}
$$

with initial and boundary conditions

$$
\begin{align*}
& u(x, 0)=u_{0}(x) \\
& u(0, t)=u_{L}(t), u(1, t)=u_{R}(t) \tag{2}
\end{align*}
$$

Here $\Omega=(0,1)$, the functions q, f and g are continuous in $\overline{Q_{T}} \backslash \Gamma_{T}$, $\Gamma_{T}=\{\zeta\} \times[0,1], \delta$ is the Dirac-delta function, $0<\zeta<1$ and β is piecewise continuous of the form

$$
\beta(x)= \begin{cases}\beta^{-}(x), & 0 \leq x \leq \zeta \\ \beta^{+}(x), & \zeta \leq x \leq 1\end{cases}
$$

Under some assumption of smoothness of the solution the problem (1)-(2) can be rewritten in the classical way [9] as follows:
$\left.u_{t}(x, t)-\left(\beta u_{x}(x, t)\right)_{x}+q(x, t) u(x, t)=f(x, t) \quad(x, t) \in Q_{T}=\Omega \times(0,1]\right)$
with initial and boundary conditions (2) and jump conditions on the interface Γ_{T}

$$
\begin{align*}
& {[u(x, t)]_{x=\zeta}=u\left(\zeta^{+}, t\right)-u\left(\zeta^{-}, t\right)=0} \\
& {\left[\beta u_{x}(x, t)\right]_{x=\zeta}=\beta^{+} u_{x}\left(\zeta^{+}, t\right)-\beta^{-} u_{x}\left(\zeta^{-}, t\right)=g(u(\zeta, t))} \tag{4}
\end{align*}
$$

Problems of this type arise in chemical processes with local reactions on a catalytic surface [1], where the global solvability and blow-up of the solution in finite time are also studied. Compatibility conditions for the regularity of the solution are described in [3]. Exis
tence and uniqueness of the variety of elliptic and parabolic interface problems are discussed in the book [9]. Special difference schemes for such problems are considered [4].

In this paper the IIFEM is applied for the proposed problem. IIFEM for interface problems with homogeneous interface conditions, or jump conditions, that are known functions, have been studied in [5-7]. In our problem the jump of the flux at the interface depends on the unknown solution. For elliptic problems of this type an IIFEM is studied in [2].

The paper is organized as follows. In the next section the weak formulation of the problem is given. Then using Rothe's method combined with the method of weights the semi-discretization in time is done. IIFEM is applied for approximation in space. Numerical experiments are presented in the last section.

WEAK FORMULATION OF THE PROBLEM

Let for simplicity consider the case of linear own source, i.e. $g(u(x, t))=K(t) u(x, t)$, where $K(t)>0, \forall t \in[0,1]$ is a continuous function.

Let introduce the usual Sobolev space $H^{1}(0,1)$, the bilinear form

$$
\begin{equation*}
a(u, v)=\int_{0}^{1}\left(\beta(x) u_{x}^{\prime}(x, t) v^{\prime}(x)+q(x, t) u(x, t) v(x) d x+K(t) u(\zeta, t) v(\zeta, t)\right. \tag{5}
\end{equation*}
$$

and linear form

$$
\begin{equation*}
b(f, v)=\int_{0}^{1} f(x, t) v(x) d x \tag{6}
\end{equation*}
$$

With $\left(u_{t}(x, t), v\right)=\int_{0}^{1} u_{t}(x, t) v(x) d x$ we denote the inner product in the space $L^{2}(0,1)$.

Then, the weak solution of the problem (3), (4) is the function $u \in H^{1}(0,1), \forall t \in(0,1]$, such that

$$
\begin{equation*}
\left(u_{t}, v\right)+a(u, v)=b(f, v) \quad \forall v \in H^{1}(0,1) \tag{7}
\end{equation*}
$$

and $u(x, t)$ satisfies the conditions in (2).
Using energetic method, see Chapter 1 of [9], it has been proved that if $u_{0}(x), q, f \in L^{2}(0,1)$, then the solution of (3)-(4) is unique $u \in H^{1}(0,1), \forall t \in(0,1]$ satisfying the weak problem (7).

METHOD OF WEIGHTS

Let introduce an uniform mesh in the time $t \in[0,1]$ with constant time step $\tau=1 / M$, $t_{m}=m \tau, m=0, \ldots, M$, where M is a positive integer. Let also with $z_{m}(x)$ denote the numerical approximation of $u\left(x, t_{m}\right)$ on the m-th time layer $m=1, \ldots, M$, and $\sigma, \sigma \in[0,1]$ is a weight. Then the semi-discretization of the problem in time [8] looks as follows:

$$
\begin{align*}
& \frac{z_{m}(x)-z_{m-1}(x)}{\tau}-\left(\sigma \beta_{m}^{\prime}(x)\right)^{\prime}-\left((1-\sigma) \beta z_{m-1}^{\prime}(x)\right)^{\prime}+\sigma q\left(x, t_{m}\right) z_{m}(x)+(1-\sigma) q\left(x, t_{m-1}\right) z_{m-1}(x) \\
& =\sigma f\left(x, t_{m}\right)+(1-\sigma) f\left(x, t_{m-1}\right)-\sigma \delta(x-\zeta) K\left(t_{m}\right) z_{m}(x)-(1-\sigma) \delta(x-\zeta) K\left(t_{m-1}\right) z_{m-1}(x), \quad x \in(0,1) \tag{8}
\end{align*}
$$

for $m=1, \ldots, M$, initial and boundary conditions

$$
\begin{align*}
& u(x, 0)=z_{0}(x)=u_{0}(x) \\
& u\left(0, t_{m}\right)=z_{m}(0)=u_{L}\left(t_{m}\right) \tag{9}\\
& u\left(1, t_{m}\right)=z_{m}(1)=u_{R}\left(t_{m}\right)
\end{align*}
$$

and jump conditions on the interface

$$
\begin{align*}
& {\left[z_{m}(x)\right]_{x=\zeta}=z_{m}\left(\zeta^{+}\right)-z_{m}\left(\zeta^{-}\right)=0} \\
& {\left[\beta z_{m}^{\prime}(x)\right]_{x=\zeta}=\beta^{+} \frac{\partial z_{m}}{\partial x}\left(\zeta^{+}\right)-\beta^{-} \frac{\partial z_{m}}{\partial x}\left(\zeta^{-}\right)=K\left(t_{m}\right) z_{m}(\zeta)} \tag{10}
\end{align*}
$$

IMMERSED INTERFACE FINITE ELEMENT METHOD

Next we introduce uniform mesh in space direction $x, x_{i}=i h, i=0, \ldots, N$, with $h=1 / N$. Let J be the number, for which $x_{J} \leq \zeta<x_{J+1}$. Let c_{i}^{m} are the unknown coefficients at x_{i} and t_{m}. Then from the idea of the FEM the numerical solution on every time layer m is a linear combination $z_{m}^{h}=\sum_{i=0}^{N} c_{i}^{m} \phi_{i}(x)$ of standard basic functions ϕ_{i}, $i \neq J, i \neq J+1$:

$$
\phi_{i}(x)=\left\{\begin{array}{c}
\frac{x-x_{i-1}}{h}, \quad x_{i-1} \leq x<x_{i} \\
\frac{x_{i+1}-x}{h}, \quad x_{i} \leq x \leq x_{i+1} \\
0, \text { elsewhere }
\end{array}\right.
$$

and two modified basis functions ϕ_{J} and ϕ_{J+1} :

$$
\phi_{J}(x)=\left\{\begin{array}{cc}
0, & 0 \leq x<x_{J-1} \\
\frac{x-x_{J-1}}{h}, & x_{J-1} \leq x<x_{J} \\
\alpha_{11} x+\beta_{11}, & x_{J} \leq x<\zeta \\
\alpha_{12} x+\beta_{12} & \zeta \leq x<x_{J+1} \\
0 & x_{J+1} \leq x \leq 1
\end{array} \quad \phi_{J+1}(x)=\left\{\begin{array}{cc}
0, & 0 \leq x<x_{j} \\
\alpha_{21} x+\beta_{21}, & x_{J} \leq x<\zeta \\
\alpha_{22} x+\beta_{22}, & \zeta \leq x<x_{J+1} \\
\frac{x_{J+2}-x}{h}, & x_{J+1} \leq x<x_{J+2} \\
0 & x_{J+2} \leq x \leq 1
\end{array}\right.\right.
$$

The coefficients $\alpha_{i j}$ and $\beta_{i j}, i, j=1,2$ must satisfy the following systems of linear algebraic equations (SLAE)

$$
\left\lvert\, \begin{aligned}
& \alpha_{11} x_{J}+\beta_{11}=1 \\
& \alpha_{12} x_{J+1}+\beta_{12}=0 \\
& \alpha_{12} \zeta+\beta_{12}-\alpha_{11} \zeta-\beta_{11}=0 \\
& \alpha_{12}-\alpha_{11}=K\left(\alpha_{11} \zeta+\beta_{11}\right)
\end{aligned} \quad\right. \text { and } \quad \left\lvert\, \begin{aligned}
& \alpha_{21} x_{J}+\beta_{21}=0 \\
& \alpha_{22} x_{J+1}+\beta_{22}=1 \\
& \alpha_{22} \zeta+\beta_{22}-\alpha_{21} \zeta-\beta_{21}=0 \\
& \alpha_{22}-\alpha_{21}=K\left(\alpha_{21} \zeta+\beta_{21}\right)
\end{aligned} .\right.
$$

Its solutions are:

$$
\begin{aligned}
& \alpha_{11}=-\frac{1+K \rho_{I+1}}{h+K \rho_{I} \rho_{I+1}}, \beta_{11}=\frac{K \zeta \rho_{I+1}+x_{I+1}}{h+K \rho_{I} \rho_{I+1}}, \alpha_{12}=-\frac{1}{h+K \rho_{I} \rho_{I+1}}, \beta_{12}=\frac{x_{J+1}}{h+K \rho_{I} \rho_{I+1}} \\
& \alpha_{21}=\frac{1}{h+K \rho_{I} \rho_{I+1}}, \beta_{21}=-\frac{x_{J}}{h+K \rho_{I} \rho_{I+1}}, \alpha_{22}=\frac{1+K \rho_{I}}{h+K \rho_{I} \rho_{I+1}}, \beta_{22}=-\frac{K \zeta \rho_{I}+x_{J}}{h+K \rho_{I} \rho_{I+1}} \\
& \rho_{I}=\zeta-x_{J} \rho_{I+1}=x_{J+1}-\zeta .
\end{aligned}
$$

In what follows, instead of (.,.) for the scalar product we will use the notation $\langle.,$.$\rangle , i.e.$ $<u, v\rangle=\int_{0}^{1} u v d x$. Then we multiply the semi-discrete equation (8) by the test function $v \in H^{1}(0,1)$, and integrating by parts with respect to x we get for $j=1, \ldots, N$:

$$
\begin{align*}
& <\sum_{i=0}^{N} \sigma \beta c_{i}^{m} \phi_{i}^{m}, \phi_{j}^{\prime m}>+<\sum_{i=0}^{N}\left(\frac{1}{\tau}+\sigma q\right) c_{i}^{m} \phi_{i}^{m}, \phi_{j}^{m}>+\left(\sum_{i=0}^{N}\left(\sigma K\left(t_{m}\right) c_{i}^{m} \phi_{i}^{m}(\zeta)\right) \phi_{j}^{m}(\zeta)=\right. \\
& <\sum_{i=0}^{N} \frac{1}{\tau} c_{i}^{m-1} \phi_{i}^{m-1}, \phi_{j}^{m}>-<\sum_{i=0}^{N}(1-\sigma) \beta c_{i}^{m-1} \phi_{i}^{m-1}, \phi_{j}^{m}>+<\sum_{i=0}^{N}(1-\sigma) q \beta c_{i}^{m-1} \phi_{i}^{m-1}, \phi_{j}^{m}>+ \tag{11}\\
& <\sigma\left(x, t_{m}\right), \phi_{j}^{m}>+<(1-\sigma) f\left(x, t_{m-1}\right), \phi_{j}^{m}>-\left(\sum_{i=0}^{N}(1-\sigma) K\left(t_{m-1}\right) c_{i}^{m-1} \phi_{i}^{m-1}(\zeta)\right) \phi_{j}^{m}(\zeta) .
\end{align*}
$$

This SLAE can be presented in the matrix form as

$$
\left(A^{1}+A^{2}+A^{3}\right) C^{m}=\left(B^{1}+B^{2}+B^{3}+B^{4}\right) C^{m-1}+\left(D^{1}+D^{2}\right)
$$

where $C^{m-1}=\left(c_{0}^{m-1}, c_{1}^{m-1}, \ldots, c_{N}^{m-1}\right)^{T}$ and $C^{m}=\left(c_{0}^{m}, c_{1}^{m}, \ldots, c_{N}^{m}\right)^{T}$ are vectors of the solution on the two consecutive time layers, with $C^{0}=\left(c_{0}^{0}, c_{1}^{0}, \ldots, c_{N}^{0}\right)^{T}, c_{i}^{0}=u_{0}\left(x_{i}\right), c_{0}^{m}=u\left(0, t_{m}\right), c_{N}^{m}=u\left(1, t_{m}\right)$ - initial and boundary conditions. The elements of the other matrices are as follows:

$$
A_{i j}^{1}=\left\{\begin{array}{cc}
0 & i \neq j, i \neq j \pm 1 \\
\sigma \int_{x_{i-1}}^{x_{i+1}} \beta^{-}(x) \phi_{i}^{m}(x)^{\prime} \phi_{j}^{m}(x)^{\prime} d x & i=j \pm 1 \text { or } i=j, \text { and } i<J \\
\sigma \int_{x_{i-1}}^{x_{i 1}} \beta^{+}(x) \phi_{i}^{m}(x)^{\prime} \phi_{j}^{m}(x)^{\prime} d x & i=j \pm 1 \text { or } i=j, \text { and } i>J+1 \\
\sigma \int_{x_{J-1}}^{\zeta} \beta^{-}(x) \phi_{J}^{m}(x)^{\prime} \phi_{J}^{m}(x)^{\prime} d x+\sigma \int_{\zeta}^{x_{J+1}} \beta^{+}(x) \phi_{J}^{m}(x)^{\prime} \phi_{J}^{m}(x)^{\prime} d x & i=J, j=J \\
\sigma \int_{x_{J}}^{\zeta} \beta^{-}(x) \phi_{J}^{m}(x)^{\prime} \phi_{J+1}^{m}(x)^{\prime} d x+\sigma \int_{\zeta}^{x_{J+1}} \beta^{+}(x) \phi_{J}^{m}(x)^{\prime} \phi_{J+1}^{m}(x)^{\prime} d x & i=J, j=J+1 \\
\sigma \int_{x_{J}}^{\zeta} \beta^{-}(x) \phi_{J+1}^{m}(x)^{\prime} \phi_{J}^{m}(x)^{\prime} d x+\sigma \int_{\zeta}^{x_{j+1}} \beta^{+}(x) \phi_{J+1}^{m}(x)^{\prime} \phi_{J}^{m}(x)^{\prime} d x & i=J+1, j=J \\
\sigma \int_{x_{J}}^{\zeta} \beta^{-}(x) \phi_{J+1}^{m}(x)^{\prime} \phi_{J+1}^{m}(x)^{\prime} d x+\sigma \int_{\zeta}^{x_{J+2}} \beta^{+}(x) \phi_{J+1}^{m}(x)^{\prime} \phi_{J+1}^{m}(x)^{\prime} d x & i=J+1, j=J+1
\end{array}\right.
$$

$$
A_{i j}^{2}=\left\{\begin{array}{cc}
0 & i \neq j, i \neq j \pm 1 \\
\int_{x_{i j-}}^{x_{i+1}}\left(\frac{1}{\tau}+\sigma q^{-}\left(x, t_{m}\right)\right) \phi_{i}^{m}(x) \phi_{j}^{m}(x) d x & i=j \pm 1 \text { or } i=j, \text { and } i<. \\
\int_{x_{i-1}}^{x_{i+1}}\left(\frac{1}{\tau}+\sigma q^{+}\left(x, t_{m}\right)\right) \phi_{i}^{m}(x) \phi_{j}^{m}(x) d x & i=j \pm 1 \text { or } i=j, \text { and } i>J \\
\int_{x_{J-1}}^{\zeta}\left(\frac{1}{\tau}+\sigma q^{-}\left(x, t_{m}\right)\right) \phi_{J}^{m}(x) \phi_{J}^{m}(x) d x+\int_{\zeta}^{x_{j+1}}\left(\frac{1}{\tau}+\sigma q^{+}\left(x, t_{m}\right)\right) \phi_{J}^{m}(x) \phi_{J}^{m}(x) d x & i=J, j=J \\
\int_{x_{J}}^{\zeta}\left(\frac{1}{\tau}+\sigma q^{-}\left(x, t_{m}\right)\right) \phi_{J}^{m}(x) \phi_{J+1}^{m}(x) d x+\int_{\zeta}^{x_{j+1}}\left(\frac{1}{\tau}+\sigma q^{+}\left(x, t_{m}\right)\right) \phi_{J}^{m}(x) \phi_{J+1}^{m}(x) d x & i=J, j=J+1 \\
\int_{x_{J}}^{\tau}\left(\frac{1}{\tau}+\sigma q^{-}\left(x, t_{m}\right)\right) \phi_{J+1}^{m}(x) \phi_{J}^{m}(x) d x+\int_{\zeta}^{x_{J+1}}\left(\frac{1}{\tau}+\sigma q^{+}\left(x, t_{m}\right)\right) \phi_{J+1}^{m}(x) \phi_{J}^{m}(x) d x & i=J+1, j=J \\
\int_{x_{J}}^{\zeta}\left(\frac{1}{\tau}+\sigma q^{-}\left(x, t_{m}\right)\right) \phi_{J+1}^{m}(x) \phi_{J+1}^{m}(x) d x+\int_{\zeta}^{x_{j}}\left(\frac{1}{\tau}+\sigma q^{+}\left(x, t_{m}\right)\right) \phi_{J+1}^{m}(x) \phi_{J+1}^{m}(x) d x & i=J+1, j=J+1
\end{array}\right.
$$

$$
A_{i j}^{3}=\left\{\begin{array}{cc}
\sigma K\left(t_{m}\right) \phi_{J}^{m}(\zeta) \phi_{J}^{m}(\zeta) & i=J, j=J \\
\sigma K\left(t_{m}\right) \phi_{J}^{m}(\zeta) \phi_{J+1}^{m}(\zeta) & i=J, j=J+1 \\
\sigma K\left(t_{m}\right) \phi_{J+1}^{m}(\zeta) \phi_{J}^{m}(\zeta) & i=J+1, j=J \\
\sigma K\left(t_{m}\right) \phi_{J+1}^{m}(\zeta) \phi_{J+1}^{m}(\zeta) & i=J+1, j=J+1 \\
0 & \text { othercases }
\end{array}\right.
$$

$$
\begin{aligned}
& B_{i j}^{1}=\left\{\begin{array}{cc}
0 & i \neq j, i \neq j \pm 1 \\
\int_{x_{i-1}}^{x_{i+1}}\left(\frac{1}{\tau}\right) \phi_{i}^{m-1}(x) \phi_{j}^{m}(x) d x & i=j \pm 1 \text { or } i=j, \text { and } i<J \\
\int_{x_{i 1}}\left(\frac{1}{\tau}\right) \phi_{i}^{m-1}(x) \phi_{j}^{m}(x) d x & i=j \pm 1 \text { or } i=j, \text { and } i>J+1 \\
\int_{x_{j-1}}\left(\frac{1}{\tau}\right) \phi_{J}^{m-1}(x) \phi_{J}^{m}(x) d x+\int_{\zeta}^{x_{J j 1}}\left(\frac{1}{\tau}\right) \phi_{J}^{m-1}(x) \phi_{J}^{m}(x) d x & i=J, j=J \\
\int_{x_{J}}\left(\frac{1}{\tau}\right) \phi_{J}^{m-1}(x) \phi_{J+1}^{m}(x) d x+\int_{\zeta}^{x_{j+1}}\left(\frac{1}{\tau}\right) \phi_{J}^{m-1}(x) \phi_{J+1}^{m}(x) d x & i=J, j=J+1 \\
\int_{x_{J}}\left(\frac{1}{\tau}\right) \phi_{J+1}^{m-1}(x) \phi_{J}^{m}{ }_{J}(x) d x+\int_{\zeta}^{x_{j+1}}\left(\frac{1}{\tau}\right) \phi_{J+1}^{m-1}(x) \phi_{J}^{m}(x) d x & i=J+1, j=J \\
\int_{x_{J}}\left(\frac{1}{\tau}\right) \phi_{J+1}^{m-1}(x) \phi_{J+1}^{m}(x) d x+\int_{\zeta}^{x_{J+2}}\left(\frac{1}{\tau}\right) \phi_{J+1}^{m-1}(x) \phi_{J+1}^{m}(x) d x & i=J+1, j=J+1
\end{array}\right. \\
& {\left[\begin{array}{cc}
0 & i \neq j, i \neq j \pm 1 \\
-(1-\sigma) \int_{\substack{x_{i-1}}}^{x_{i-1}} \beta^{-}(x) \phi_{i}^{m-1}(x)^{\prime} \phi_{j}^{m}(x)^{\prime} d x & i=j \pm 1 \text { or } i=j, \text { and } i<J \\
-(1-\sigma) \int_{x_{i-1}}^{x_{i+1}} \beta^{+}(x) \phi_{i}^{m-1}(x)^{\prime} \phi_{j}^{m}(x)^{\prime} d x
\end{array} \quad i=j \pm 1 \text { or } i=j, \text { and } i>J+1\right.} \\
& B_{i j}^{2}= \begin{cases}-(1-\sigma) \int_{x_{J-1}}^{\zeta} \beta^{-}(x) \phi_{J}^{m-1}(x)^{\prime} \phi_{J}^{m}(x)^{\prime} d x-(1-\sigma) \int_{\zeta}^{x_{j+1}} \beta^{+}(x) \phi_{J}^{m-1}(x)^{\prime} \phi_{J}^{m}(x)^{\prime} d x & i=J, j=J \\
-(1-\sigma) \int_{x_{J}}^{\int_{j}} \beta^{-}(x) \phi_{J}^{m-1}(x)^{\prime} \phi_{J+1}^{m}(x)^{\prime} d x-(1-\sigma) \int_{\zeta}^{x_{j J 1}} \beta^{+}(x) \phi_{J}^{m-1}(x)^{\prime} \phi_{J+1}^{m}(x)^{\prime} d x & i=J, j=J+1\end{cases} \\
& -(1-\sigma) \int_{x_{J}}^{\zeta} \beta^{-}(x) \phi_{J+1}^{m-1}(x)^{\prime} \phi_{J}^{m}(x)^{\prime} d x-(1-\sigma) \int_{\zeta}^{x_{j}+1} \beta^{+}(x) \phi_{J+1}^{m-1}(x)^{\prime} \phi_{J}^{m}(x)^{\prime} d x \quad i=J+1, j=J \\
& -(1-\sigma) \int_{x_{J}}^{\zeta} \beta^{-}(x) \phi_{J+1}^{m-1}(x)^{\prime} \phi_{J+1}^{m}(x)^{\prime} d x-(1-\sigma) \int_{\zeta}^{x_{f}} \beta^{+}(x) \phi_{J+1}^{m-1}(x)^{\prime} \phi_{J+1}^{m}(x)^{\prime} d x \quad i=J+1, j=J+1 \\
& \left\{\begin{array}{cc}
i \neq j, i \neq j \pm 1 \\
(1-\sigma) \int_{\substack{x_{i-1} \\
x_{i-1}}}^{x_{i+1}^{-}\left(x, t_{m-1}\right) \phi_{i}^{m-1}(x) \phi_{j}^{m}(x) d x} & i=j \pm 1 \text { or } i=j, \text { and } i<J \\
(1-\sigma) \int_{x_{i-1}}^{x_{i-1}} q^{+}\left(x, t_{m-1}\right) \phi_{i}^{m-1}(x) \phi_{j}^{m}(x) d x & i=j \pm 1 \text { or } i=j, \text { and } i>J+1
\end{array}\right. \\
& B_{i j}^{3}= \begin{cases}(1-\sigma) \int_{x_{J-1}}^{\zeta} q^{-}\left(x, t_{m-1}\right) \phi_{J}^{m-1}(x) \phi_{J}^{m}(x) d x+(1-\sigma) \int_{\zeta}^{x_{j+1}} q^{+}\left(x, t_{m-1}\right) \phi_{J}^{m-1}(x) \phi_{J}^{m}(x) d x & i=J, j=J \\
(1-\sigma) \int_{x_{J}}^{\int_{i}} q^{-}\left(x, t_{m-1}\right) \phi_{J}^{m-1}(x) \phi_{J+1}^{m}(x) d x+(1-\sigma) \int_{\zeta}^{x_{j+1}} q^{+}\left(x, t_{m-1}\right) \phi_{J}^{m-1}(x) \phi_{J+1}^{m}(x) d x & i=J, j=J+1 \\
(1-\sigma) \int_{x_{J}}^{x_{j+1}} q^{-}\left(x, t_{m-1}\right) \phi_{J+1}^{m-1}(x) \phi_{J}^{m}(x) d x+(1-\sigma) \int_{\zeta}^{x_{j}} q^{+}\left(x, t_{m-1}\right) \phi_{J+1}^{m-1}(x) \phi_{J}^{m}(x) d x & i=J+1, j=J \\
(1-\sigma) \int_{x_{J}}^{\int_{J}} q^{-}\left(x, t_{m-1}\right) \phi_{J+1}^{m-1}(x) \phi_{J+1}^{m}(x) d x+(1-\sigma) \int_{\zeta}^{x_{J j+}^{2}} q^{+}\left(x, t_{m-1}\right) \phi_{J+1}^{m-1}(x) \phi_{J+1}^{m}(x) d x & i=J+1, j=J+1\end{cases}
\end{aligned}
$$

$$
\begin{aligned}
& B_{i j}^{4}=\left\{\begin{array}{cc}
-(1-\sigma) K\left(t_{m-1}\right) \phi_{J}^{m-1}(\zeta) \phi_{J}^{m}(\zeta) & i=J, j=J \\
-(1-\sigma) K\left(t_{m-1}\right) \phi_{J}^{m-1}(\zeta) \phi_{J+1}^{m}(\zeta) & i=J, j=J+1 \\
-(1-\sigma) K\left(t_{m-1}\right) \phi_{J+1}^{m-1}(\zeta) \phi_{J}^{m}(\zeta) & i=J+1, j=J \\
-(1-\sigma) K\left(t_{m-1}\right) \phi_{J+1}^{m-1}(\zeta) \phi_{J+1}^{m}(\zeta) & i=J+1, j=J+1 \\
0 & \text { other cases }
\end{array} ;\right. \\
& \sigma \int_{x_{i-1}}^{x_{i+1}} f^{-}\left(x, t_{m}\right) \phi_{i}^{m} d x \quad i \neq J, i \neq J+1, i<J \\
& D_{i}^{1}=\left\{\begin{array}{cc}
\sigma \int_{x_{i-1}}^{x_{i+1}} f^{+}\left(x, t_{m}\right) \phi_{i}^{m} d x & i \neq J, i \neq J+1, i>J+1 \\
\sigma \int_{x_{J-1}}^{\zeta} f^{-}\left(x, t_{m}\right) \phi_{J}^{m} d x+\sigma \int_{\zeta}^{x_{j+1}} f^{+}\left(x, t_{m}\right) \phi_{J}^{m} d x & i=J
\end{array}\right. \\
& \sigma \int_{x_{J}}^{\zeta} f^{-}\left(x, t_{m}\right) \phi_{J+1}^{m} d x+\sigma \int_{\zeta}^{x_{j} 2^{2}} f^{+}\left(x, t_{m}\right) \phi_{J+1}^{m} d x \quad i=J+1 \\
& D_{i}^{2}=\left\{\begin{array}{cc}
(1-\sigma) \int_{x_{i-1}}^{x_{i-1}} f^{-}\left(x, t_{m-1}\right) \phi_{i}^{m} d x & i \neq J, i \neq J+1, i<J \\
(1-\sigma) \int_{x_{i-1}}^{x_{i+1}} f^{+}\left(x, t_{m-1}\right) \phi_{i}^{m} d x & i \neq J, i \neq J+1, i>J+1 \\
(1-\sigma) \int_{x_{J-1}}^{\zeta} f^{-}\left(x, t_{m-1}\right) \phi_{J}^{m} d x+(1-\sigma) \int_{\zeta}^{x_{J+1}} f^{+}\left(x, t_{m-1}\right) \phi_{J}^{m} d x & i=J \\
(1-\sigma) \int_{x_{J}}^{\zeta} f^{-}\left(x, t_{m-1}\right) \phi_{J+1}^{m} d x+(1-\sigma) \int_{\zeta}^{x_{J j}} f^{+}\left(x, t_{m-1}\right) \phi_{J+1}^{m} d x & i=J+1
\end{array} .\right.
\end{aligned}
$$

The matrices A^{3} and B^{4} correspond to the corrections, results of the δ - Dirac function.

NUMERICAL EXPERIMENTS

As a test problem we consider

$$
u_{t}(x, t)-\left(\beta u_{x}(x, t)\right)_{x}=-\delta(x-\zeta) K u(x, t) \quad(x, t) \in(0,1) \times(0,1]
$$

with initial and boundary conditions

$$
\begin{aligned}
& u(x, 0)=u_{0}(x)=\left\{\begin{array}{l}
\frac{\cos \left(x / \sqrt{\beta^{-}}\right)}{\left.\frac{\cos \left(\zeta / \sqrt{\beta^{-}}\right.}{}\right)}, 0 \leq x \leq \zeta \\
\frac{\sin \left(x / \sqrt{\beta^{+}}\right)}{\sin \left(\zeta / \sqrt{\beta^{+}}\right)}, \zeta<x \leq 1
\end{array}\right. \\
& u(0, t)=u_{L}(t)=\frac{\exp (-t)}{\cos \left(\zeta / \sqrt{\beta^{-}}\right)}, u(1, t)=u_{R}(t)=\frac{\sin \left(1 / \sqrt{\beta^{+}}\right) \exp (-t)}{\sin \left(\zeta / \sqrt{\beta^{+}}\right)} .
\end{aligned}
$$

The function $K(t)$ for this problem is a constant $K=\sqrt{\beta^{+}} \operatorname{ctg}\left(\frac{\zeta}{\sqrt{\beta^{+}}}\right)+\sqrt{\beta^{-}} \operatorname{tg}\left(\frac{\zeta}{\sqrt{\beta^{-}}}\right)$.
The jump conditions are: ${ }^{[u(x, t)]_{x=\zeta}=u\left(\zeta^{+}, t\right)-u\left(\zeta^{-}, t\right)=0, ~}$

$$
\left[\beta u_{x}(x, t)\right]_{x=\zeta}=\beta^{+} u_{x}\left(\zeta^{+}, t\right)-\beta^{-} u_{x}\left(\zeta^{-}, t\right)=K(t) u(\zeta, t)=K u(\zeta, t)
$$

The exact solution is
$u(x, t)=\left\{\begin{array}{l}\frac{\cos \left(x / \sqrt{\beta^{-}}\right)}{\cos \left(\zeta / \sqrt{\beta^{-}}\right)} \exp (-t), 0 \leq x \leq \zeta \\ \frac{\sin \left(x / \sqrt{\beta^{+}}\right)}{\sin \left(\zeta / \sqrt{\beta^{+}}\right)} \exp (-t), \zeta<x \leq 1\end{array}\right.$.
In Table 1 the results for the parameters $\sigma=1 / 2, \zeta=\pi / 6$, $K=\sqrt{\beta^{+}} \operatorname{ctg}\left(\frac{\zeta}{\sqrt{\beta^{+}}}\right)+\sqrt{\beta^{-}} \operatorname{tg}\left(\frac{\zeta}{\sqrt{\beta^{-}}}\right)$are presented. We choose two different cases for the discontinuous coefficients $\beta^{-}=10, \beta^{+}=1$ and $\beta^{-}=1, \beta^{+}=10$. The error of the numerical solution in maximum norm for different N and M is denoted by $\left\|e r_{N}^{M}\right\|_{\infty}=\max _{i, m}\left(\left|u\left(x_{i}, t_{m}\right)-z_{m}^{h}\left(x_{i}\right)\right|\right)$, and the rate of convergence - by rate $=\log _{2}\left(\frac{\left\|e r_{N}^{M}\right\|_{\infty}}{\left\|e r_{2 N}^{2 M}\right\|_{\infty}}\right)$. The results confirm that the method is of second order on space and time for the case of $\sigma=1 / 2$, when the method of weights is known as Crank-Nicolson method.

In Figure 1 the exact solution and the error of the numerical solution for $N=M=40$ and $\beta^{-}=1, \beta^{+}=10, \sigma=1 / 2, \zeta=\pi / 6$ are presented.

Table 1. The numerical results for $\sigma=1 / 2, \zeta=\pi / 6, K=\sqrt{\beta^{+}} \operatorname{ctg}\left(\frac{\zeta}{\sqrt{\beta^{+}}}\right)+\sqrt{\beta^{-}} \operatorname{tg}\left(\frac{\zeta}{\sqrt{\beta^{-}}}\right)$

N	M	$\beta^{-}=10, \beta^{+}=1$		$\beta^{-}=1, \beta^{+}=10$					
		$\left\\|e r_{N}^{M}\right\\|_{\infty}$	rate	$\left\\|e r_{N}^{M}\right\\|_{\infty}$	rate				
5	5	0.000367	-	0.000436	-				
10	10	$8.3325 \mathrm{e}-5$	2.1418	$9.2664 \mathrm{e}-5$	2.2364				
20	20	$1.6931 \mathrm{e}-5$	2.2990	$1.8992 \mathrm{e}-5$	2.2865				
40	40	$4.0763 \mathrm{e}-6$	2.0543	$4.5944 \mathrm{e}-6$	2.0474				
80	80	$1.0141 \mathrm{e}-6$	2.0070	$1.1397 \mathrm{e}-6$	2.0112				
160	160	$2.5325 \mathrm{e}-7$	2.0015	$2.8474 \mathrm{e}-7$	2.0009				
320	320	$6.3306 \mathrm{e}-8$	2.0001	$7.1157 \mathrm{e}-8$	2.0005				

Fig.1. The exact solution and the error of the numerical solution for $N=M=40$ and

$$
\beta^{-}=1, \beta^{+}=10
$$

Many other numerical experiments with different values of the coefficients have been done. All of them confirm the following proposition:

Proposition: If the assumptions for the coefficients and functions are fulfilled, then the proposed IIFEM in the case $\sigma=1 / 2$ is of second order both in space and time, i.e. for the error of the numerical solution of (9), (10) u (11) z_{m}^{h} the estimate.
$\left\|z_{m}^{h}-u\right\|_{\infty} \leq C\left(h^{2}+\tau^{2}\right)$
holds, where the constant C does not depend on h and τ.

CONCLUSION

In this work we investigate the application of the IIFEM for a parabolic problem with local own sources on some interface, embedding in the domain. For the numerical solution we use method of weights and FEM with special basic functions satisfying the jump conditions on the interface. Second order of convergence in the case $\sigma=1 / 2$ is numerically proved. The theoretical proof of the proposition and application of ODE solvers of Matlab are object of our forthcoming work.

ACKNOWLEDGEMENTS

This paper is supported by University of Ruse under Project 2015-FPHHC-03 and Project 2015-FNSE-03.

REFERENCES

[1] Chadam, J. M., H. M. Yin, A diffusion equations with localized chemical reactions. Proc. Edinsburg Math. Soc., V. 37 (1993), pp. 101-118.
[2] Georgiev I., J. Kandilarov. An immersed interface FEM for elliptic problems with local own sources. IN: American Institute of Physics CP series 1186, New York, USA, 2009, pp. 335-342.
[3] J.D. Kandilarov, L.G. Vulkov. The immersed interface method for a nonlinear chemical diffusion equation with local sites of reactions. Numer. Algor., V. 36 (2004), pp. 285-307.
[4] Kandilarov, J., Immersed interface method for parabolic problems of special type, PhD Thesis, University of Rousse, Rousse, 2005 (in Bulgarian).
[5] Li Z. The immersed interface method using a finite element formulation. Appl. Num. Math., 1998, 27/3, pp. 253-267.
[6] Li, Z., K. Ito, The Immersed Interface Method: Numerical Solutions of PDEs Involving Interfaces and Irregular Domains. SIAM, Philadelphia, AM, 2006.
[7] Loubenets, A., A New Finite Element Method for Elliptic Interface problems. PhD Thesis, TRITA-NA-0545, NADA, Stockholm 2006.
[8] Rektorys K. The method of discretization in time. SNTL, Prague, 1982.
[9] L.G. Vulkov, J.D. Kandilarov, Immersed Interface Method for Elliptic and Parabolic Problems. University of Rousse, Rousse, 2011 (in Bulgarian).

CONTACT ADDRESSES

Assist. Ivan Georgiev
Department of Applied Mathematics and Statistics
Faculty of Public Health and Health Care
Angel Kanchev University of Ruse
8 Studentska Str.,
7017 Ruse, Bulgaria
Phone: (++359 82) 888424
E-mail: irgeorgiev@uni-ruse.bg

Assoc. Prof. Juri Kandilarov, PhD Department of Mathematics

Faculty of Natural Sciences and Education
Angel Kanchev University of Ruse 8 Studentska Str., 7017 Ruse, Bulgaria Phone: (++359 82) 888634 E-mail: ukandilarov@uni-ruse.bg

ВЛОЖЕН ИНТЕРФЕЙСЕН МЕТОД НА КРАЙНИТЕ ЕЛЕМЕНТИ ЗА УРАВНЕНИЕ НА ДИФУЗИЯТА С ЛОКАЛЕН ИЗТОЧНИК

Иван Георгиев, Юрий Кандиларов

Русенски университет "Ангел Кънчев"
Резюме: В статията се разглежда уравнение на дифузията с локален собствен източник. Дефинирана е слаба формулировка на задачата и е приложен вложен интерфейсен метод на крайните елементи за численото решаване на проблема. При дискретизацията по времето е използван метод на Роте с тегла. След това са въведени специални базисни функции, които удовлетворяват условията на скока на решението и потока върху интерфейса. Представени са числени експерименти, които потвърждават втори ред на точност в максимална норма.

Ключови думи: вложен интерфейс, метод на крайните елементи, уравнение на дифузията, локални източници, метод на Poте

Requirements and guidelines for the authors "Proceedings of the Union of Scientists - Ruse"
 Book 5 Mathematics, Informatics and Physics

The Editorial Board accepts for publication annually both scientific, applied research and methodology papers, as well as announcements, reviews, information materials, adds. No honoraria are paid.
The paper scripts submitted to the Board should answer the following requirements:

1. Papers submitted in English are accepted. Their volume should not exceed 8 pages, formatted following the requirements, including reference, tables, figures and abstract.
2. The text should be computer generated (MS Word 2003 for Windows or higher versions) and printed in one copy, possibly on laser printer and on one side of the page. Together with the printed copy the author should submit a disk (or send an e-mail copy to: vkr@ami.uni-ruse.bg).
3. Compulsory requirements on formatting:
font - Ariel 12;
paper Size - A4;
page Setup - Top: 20 mm , Bottom: 15 mm , Left: 20 mm , Right: 20mm;
Format/Paragraph/Line spacing - Single;
Format/Paragraph/Special: First Line, By: 1 cm ;
Leave a blank line under Header - Font Size 14;
~ Title should be short, no abbreviations, no formulas or special symbols - Font Size 14, centered, Bold, All Caps;

- One blank line - Font Size 14;
~ Name and surname of author(s) - Font Size: 12, centered, Bold;
~ One blank line - Font Size 12;
~ Name of place of work - Font Size: 12, centered;
~ One blank line;
~ abstract - no formulas - Font Size 10, Italic, 5-6 lines ;
keywords - Font Size 10, Italic, 1-2 lines;
one blank line;
text - Font Size 12, Justify;
references;
contact address - three names of the author(s) scientific title and degree, place of work, telephone number, Email - in the language of the paper.

4. At the end of the paper the authors should write:
~The title of the paper;
~ Name and surname of the author(s);
abstract; keywords.
Note: The parts in item 4 should be in Bulgarian and have to be formatted as in the beginning of the paper. 5. All mathematical signs and other special symbols should be written clearly and legibly so as to avoid ambiguity when read. All formulas, cited in the text, should be numbered on the right.
5. Figures (black and white), made with some of the widespread software, should be integrated in the text.
6. Tables should have numbers and titles above them, centered right.
7. Reference sources cited in the text should be marked by a number in square brackets.
8. Only titles cited in the text should be included in the references, their numbers put in square brackets. The reference items should be arranged in alphabetical order, using the surname of the first author, and written following the standard. If the main text is in Bulgarian or Russian, the titles in Cyrillic come before those in Latin. If the main text is in English, the titles in Latin come before those in Cyrillic. The paper cited should have: for the first author - surname and first name initial; for the second and other authors - first name initial and surname; title of the paper; name of the publishing source; number of volume (in Arabic figures); year; first and last page number of the paper. For a book cited the following must be marked: author(s) - surname and initials, title, city, publishing house, year of publication.

10. The author(s) and the reviewer, chosen by the Editorial Board, are responsible for the contents of the materials submitted.
 Important for readers, companies and organizations

1. Authors, who are not members of the Union of Scientists - Ruse, should pay for publishing of materials.
2. Advertising and information materials of group members of the Union of Scientists - Ruse are published free of charge.
3. Advertising and information materials of companies and organizations are charged on negotiable (current) prices.

Editorial Board

