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MARGINAL DENSITIES OF THE WISHART DISTRIBUTION 
CORRESPONDING TO CYCLE GRAPHS1 

 
Evelina Veleva 

 
Angel Kanchev University of Ruse 

 
Abstract: The aim of the paper is to suggest a technique for the calculation of marginal densities of 

the Wishart distribution, corresponding to cycle graphs. Each non-decomposable graph consists of at least 
one cycle with 4 or more edges. Using the results for decomposable graphs, it is shown how by Monte Carlo 
method for numerical integration a marginal density, corresponding to any cyclic graph can be computed at a 
given point. 

Keywords: Wishart distribution, non-decomposable graph, marginal density, covariance matrix, 
graphical Gaussian models 

 

INTRODUCTION 

The distribution of the sample covariance matrix for a sample from a multivariate 
normal distribution is derived in 1928 by Wishart ([11]) and is known as the Wishart distri-

bution. It is a multivariate generalization of the
2 ( chi-square) distribution and is present 

in almost all textbooks on multivariate statistical analysis. Wishart distribution is subject to 
research and generalization since its introduction in 1928 until now. The study of this dis-
tribution is relevant and up to date as evidenced by the publication of more new materials 
on the subject (see e.g. [1], [6], [7]). A p p  random matrix with Wishart distribution 

W ( , )p n  , where 1p n   and   is a positive definite p p  matrix, has probability den-

sity of the form 

 
1( 1) / 2 (W )/2

, , / 2 / 2

1
(W) (detW)

2 /2 (det )

n p tr

p n np n

p

f e
n

   

 
 

   (1) 

for every real p p  positive definite matrix W , where ( )p   is the multivariate Gamma 

function defined as   ( 1) / 4

1
[ (1 )/2]

pp p

p j
j  


      and det( ) , ( )tr   denote the 

determinant and the trace of a matrix. When the observed multivariate normal distributed 

random variables are mutually independent,   as well as its inverse 
1  are diagonal ma-

trices. We shall denote the elements of the matrix 
1  by ,i j . The equality , 0i j   means 

that the corresponding pair of variables iX  and jX  are conditionally independent given all 

other 2p  variables. The presence of conditional independence between pairs of factors 

given the others underlies graphical Gaussian models ([5]). In some scientific fields, such 
as genetics, majority of pairs of factors are conditionally independent given the rest. The 

elements of the sample covariance matrix for which the elements of the matrix 
1  are 

non-zero form a set of sufficient statistics for the estimation of the covariance matrix   
(see [2]). When modelling covariance matrices it is sufficient to include in the model only 

those covariance coefficients for which , 0i j  . The respective marginal density of the 

                                                 
1
This paper contains results of the work on project  No 2015 -  FPHHC – 03, financed by „Scientific Re-

search” Fund of Ruse University. 
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Wishart distribution which will be used for the estimation of the parameters of the model 

can be obtained by integrating the density (1) with respect to those ,i jw  for which , 0i j  .  

By integrating the density (1), some marginal densities of the Wishart distribution are 
derived in [8] in explicit form. The bounds of the integration however, cannot always be 

exactly obtained. Let ,( )i jWW  be a p p  positive definite random matrix with an arbi-

trary distribution. Let M  be a subset of the set ,{ ,1 }i jW i j p    of non-diagonal elements 

of W. The marginal density CM
f , obtained after integration of the density function of W 

with respect to the variables from M , can be represented by a graph MG  with the set of 

vertices {1, , }V p . For every element ,i jW  of the set ,{ ,1 }\i jW i j p M    we draw in the 

graph an undirected edge between the vertices „ i ” and „ j ”. For instance, the graph on 

Figure 1 presents the joint (marginal) density of the random variables from the set 

1,2 2,3 3,4 4,5 5,6 6,7 7,8 1,8{ , , , , , , , }W W W W W W W W . For a graph with 8p   vertices, the number of all 

possible edges is 2

8C 28. In this case the set M  consists of the rest 20 variables with 

respect to which the density function of W is integrated. 

   
Fig.1. Cycle graph    Fig.2. Decomposable graph 

 
The next Proposition is proved in [9]. 

Proposition 1. The bounds of the integration of the density function of W with re-
spect to all the elements of M  can be exactly obtained if and only if the corresponding 

graph MG  is decomposable. 

We shall recall some basic concepts from graph theory (see [5]). Let ( , )G V E  be a 

graph with a finite set of vertices V  and a set of undirected edges E . G  is called a com-

plete graph if every pair of distinct vertices is connected by an edge. A subset of vertices 

U V  defines an induced subgraph UG  of G  which contains all the vertices U  and any 

edges in E  that connect vertices in U . A clique is a complete subgraph that is maximal, 
that is, it is not a subgraph of any other complete subgraph.  

Definition 1. A graph G  is decomposable if and only if the set of cliques of G  can be 

ordered as ( 1C , 2C ,..., kC ) so that for each 2, ,i k  if 
1

1

i i

i

j

j

S C C




 
 
 
 

 then i lS C  for 

some l i . 

For a decomposable graph MG , if , 0i j   for every element ,i jW  of M , the marginal 

density CM
f  of the Wishart distribution has a compact form, derived in [9] and given below 

by Proposition 2. For an arbitrary p p  matrix A  and a subset {1,2, , }p   we shall 
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denote by A[ ]  the submatrix of A , composed of the rows and columns with numbers 

from  . By   we denote the number of elements of a set  . 

Proposition 2. Let ,( )i jWW has Wishart distribution W ( , )p n   and M  be a sub-

set of the set ,{ ,1 }i jW i j p    of non-diagonal elements of W. Let , 0i j   for every ele-

ment ,i jW  of M . Let the graph MG  be decomposable with k  cliques 1C , 2C ,..., kC , or-

dered according to Definition 1 and iV  be the set of vertices of iC , 1, ,i k . Then the joint 

density CM
f  of the elements of the set ,{ ,1 }\C

i jM W i j p M     can be written in the 

form 

0, , [ ]
1

0

0, , [ ]
2

(W [ ])

(W )

(W [ ])

i i

C

i i

k

iV n V
i
kM

iU n U
i

f V

f

f U











,        (2) 

where 0 ,W ( )i jw  is a p p  symmetric matrix such that , 0i jw   for ,i jW M ; , , (W)p nf   is 

the Wishart density function given by (1) and 1 1( )i i iU V V V    , 2, ,i k . 

Obtaining of marginal densities corresponding to non-decomposable graphs is dis-
cussed in [8]. According to Proposition 1, they cannot be expressed in explicit form. For a 

non-decomposable graph MG  the marginal density CM
f  can be calculated numerically for 

every set of fixed values for the random variables from the set ,{ ,1 }\C

i jM W i j p M    . 

These values can be written in the form of a matrix 0W , where the elements corresponding 

to the elements of M  are zeros. For the calculation of 0(W )CM
f  in [10], the using of Monte 

Carlo method for numerical integration is suggested. Let 1M  and 2M  be sets such that 

1) 
1 2 ,{ ,1 }i jM M M W i j p       and the densities 

1
CM

f  and 
2
CM

f  correspond to  

decomposable graphs; 

2) the density 
2
CM L

f


, where 1\L M M , corresponds to a decomposable graph. 

The choice of 1M  and 2M  is not unique and is always possible. Then 0(W )CM
f  can 

be written as 

1
0

0 0

0

(W ,x)
(W ) (W ,x) x

(W ,x)

C

C

M

M
D

f
f g d

g

 
 
 
 
 ,       (3) 

where D  is the domain of definition of 
1
CM

f , the integration is with respect to all variables 

from the set L  and 0(W ,x)g  is a probability density function on D . In [10], 0(W ,x)g  is pro-

posed to be the conditional probability density function 

0(W ,x)g 
2

0/
(W ,x)CL M

f 2

2

0

0

(W ,x)

(W )

C

C

M L

M

f

f


 ,       (4) 

derived by Proposition 2 under the condition that , 0i j   for every element ,i jW  of 2M . By 

(3), 0(W )CM
f  is presented as the expectation of the random variable 

1
0

0

(W , )

(W , )

CM
f

g

ξ

ξ
,           (5) 
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where ξ  is a random vector with density function 0(W ,x)g . Hence 0(W )CM
f  can be esti-

mated by the mean value of a large number of realizations of (5). The main difficulty there-
fore is the generation of realizations of a random vector   with a given probability density 

function 0(W ,x)g . Each non-decomposable graph consists of at least one cycle with 4 or 

more edges. The aim of this paper is to be applied the proposed approach for the calcula-
tion of marginal densities of the Wishart distribution, corresponding to cycle graphs with 
any number of edges, greater than 3. 

 
MARGINAL DENSITIES CORRESPONDING TO CYCLE GRAPHS 

Let W  be a random matrix with Wishart distribution W ( , )p n  . Let us consider the 

joint density of the variables from the set 1,2 2,3 3,4 1, 1, 1,1 ,{ , , , , , , , , }C

p p p p pM W W W W W W W , 

presented by the continuous edges on the graph of Figure 2. We have to choose the sets 

1M  and 2M , 
1 2 ,{ ,1 }i jM M M W i j p      , such that the densities 

1
CM

f  and 
2
CM

f cor-

respond to decomposable graphs. The density 
2
CM L

f


, where 1\L M M , also have to cor-

respond to a decomposable graph. This conditions will be satisfied if we choose 

1,3 1,4 1,5 1, 1{ , , , , }pL W W W W   so that 
1

CM  is presented by all edges on the graph of Figure 2 

and 2 1,\{ }C C

pM M W . Let 
1,2 2,3 1, 1, 1,1 ,, , , , , ,p p p p py y y y y y

 be fixed values for the random 

variables from the set CM . We suppose that 
, 0i jy   for i j  and 2

, , ,i i j j i jy y y  for i j , 

otherwise these values cannot be elements of a positive definite matrix. Let us denote by 

0W  the matrix 0

0 ,W ( )i jw  such that 

0 , , ,
,

0

C C

i j i j j i
i j

y if W M or W M
w

otherwise

  
 


. 

The variables 
1,3 1,4 1, 1, , , px x x 

correspond to the elements of the set L  with respect to 

which we have to integrate the density 
1
CM

f . Let Wx  be the matrix ,W ( )x

x i jw  such that 

, , ,

0,
,

i j i j j ix

i j
i j

x if W L or W L
w

w otherwise

 
 


. 

The graph 
1MG , shown on Figure 2, is decomposable with 2p  cliques iC , 

1, , 2i p   with sets of vertices {1, 1, 2}iV i i   , 1, , 2i p  . Assuming , 0i j   for 

, 1i jW M , according to Proposition 2, the density 
1
CM

f  has the form 

1

2

3, ,Σ[ ]

1
2

2, ,Σ[ ]

2

(W [ ])

(W )

(W [ ])

i

C

i

p

n V x i

i
x pM

n U x i

i

f V

f

f U












, 

where {1, 1}iU i  , 2, , 2i p  . 

The probability density function 0(W ) (W ,x)xg g  will be computed under the condi-

tion that , 0i j   for every element ,i jW  of 2M . The graph 
2MG  is decomposable with 1p  

cliques with sets of vertices { , 1}iT i i  , 1, , 1i p   respectively. Therefore, according to 

Proposition 2 
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2

1

2, ,Σ[ ] 0

1
0 1

1, ,Σ[{ }] 0

2

(W [ ])

(W )

(W [{ }])

i

C

p

n T i

i
pM

n i

i

f T

f

f i












. 

The graph, corresponding to the marginal density 
2
CM L

f


consists of all edges on Fig-

ure 2 except the edge connecting the vertices 1 and p . This graph is decomposable with 

2p  cliques with sets of vertices iV , 1, , 3i p   and 
1pT 
 respectively. Consequently 

1

2

3

2, ,Σ[ ] 1 3, ,Σ[ ]

1
3

1, ,Σ[{ 1}] 2, ,Σ[ ]

2

(W [ ]) (W [ ])

(W )

(W [{ 1}]) (W [ ])

p i

C

i

p

n T x p n V x i

i
x pM L

n p x n U x i

i

f T f V

f

f p f U





















, 

hence 

2

2

2

3 2

3, ,Σ[ ] 1, ,Σ[{ }]

1 2

/ 3 2
0

2, ,Σ[ ] 2, ,Σ[ ]

2 1

(W [ ]) (W [{ }])
(W )

(W ) (W )
(W )

(W [ ]) (W [ ])

i
C

C

C

i i

p p

n V x i n i x
xM L i i

x xL M p p

M
n U x i n T x i

i i

f V f i
f

g f
f

f U f T

 

  

 

 

  
  
    
  
  
  

 

 
.  (6) 

Each realization of the random variable (5) will have the form 

21

2

2

2, ,Σ[ ] 0
3, ,Σ[ ] 21

2

2, ,Σ[ ] 2
1, ,Σ[{ }] 0

2

(W [ ])(W ) (W [ ])

(W ) (W [ ])
(W [{ }])

iC
p

p

p

n T i
x n V x pM i

p

x n U x p
n i

i

f Tf f V

g f U
f i














 
 
 
 
 
 




.     (7) 

For the calculation of (7) we must have a realization 1,3 1,4 1, 1{ , , , }px x x x  of a random 

vector 1,3 1,4 1, 1{ , , , }p   ξ  with density function (6). Let us consider the transformation 

2 2

1,3 1,2 2,3 1,3 1,1 2,2 1,2 2,2 3,3 2,3

2,2

1
( )( )x y y z y y y y y y

y
    
 

,     (8) 

2 2

1,4 1,3 3,4 1,4 1,1 3,3 1,3 3,3 4,4 3,4

3,3

1
( )( )x x y z y y x y y y

y
    
 

,     (9) 

2 2

1, 1 1, 2 2, 1 1, 1 1,1 2, 2 1, 2 2, 2 1, 1 2, 1

2, 2

1
( )( )p p p p p p p p p p p p p p

p p

x x y z y y x y y y
y

             

 

    
 

.         (10) 

The inverse transformation is 

1,3 2,2 1,2 2,3

1,3 2 2

1,1 2,2 1,2 2,2 3,3 2,3( )( )

x y y y
z

y y y y y y




 
, 

1,4 3,3 1,3 3,4

1,4 2 2

1,1 3,3 1,3 3,3 4,4 3,4( )( )

x y x y
z

y y x y y y




 
, 

1, 1 2, 2 1, 2 2, 1

1, 1 2 2

1,1 2, 2 1, 2 2, 2 1, 1 2, 1( )( )

p p p p p p

p

p p p p p p p p p

x y x y
z

y y x y y y

     



        




 
. 

 
It is easy to see that all elements above the main diagonal in the Jacobian J , 

 
 

1,3 1,4 1, 1

1,3 1,4 1, 1

, , ,

, , ,

p

p

z z z

x x x









J  are equal to zero. Consequently  
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1, 11,3 1,4

1,3 1,4 1, 1

det
p

p

zz z

x x x





 

  

J  

2,2 3,3

2 2 2 2

1,1 2,2 1,2 2,2 3,3 2,3 1,1 3,3 1,3 3,3 4,4 3,4( )( ) ( )( )

y y

y y y y y y y y x y y y
 

   
 

2, 2

2 2

1,1 2, 2 1, 2 2, 2 1, 1 2, 1( )( )

p p

p p p p p p p p p

y

y y x y y y

 

        


 

 

2

2
1/2 1/2

2 3

1 2

det(W [{ }])

det(W [ ]) det(W [ ])

p

x

i

p p

x i x i

i i

i

T U





 

 


   
   
   



 

. 

Theorem 1. Let 
1,3 1,4 1, 1, , , pz z z 

 be realizations of independent and identically distrib-

uted random variables 
1,3 1,4 1, 1, , , p   

 with density function 

4
2 2

1

2
(1 )

2 1

2 2

n

n

z
n



 
 
  
   

    
   

,  ( 1,1)z  .               (11) 

Then the variables 
1,3 1,4 1, 1, , , px x x 

 defined by equalities (8) – (10) are realizations of 

random variables 
1,3 1,4 1, 1, , , p   

 with joint density function (6). 

Proof. The joint density function of the random variables 
1,3 1,4 1, 1, , , p   

 is 

1,3 1,4 1, 1( , , , )pf z z z 
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for 
1, ( 1,1)iz   , 3, , 1i p  . Using (8), it is easy to check that 
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Consequently 2,2 12
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and hence for 2, , 3i p    
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The joint density of the random variables 1,3 1,4 1, 1, , , p     gets the form 
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With respect to the variables 
1,3 1,4 1, 1, , , px x x 

 the density function (W )xg , given by (6), 

can be written in the form 
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, 

if the matrices W [ ]x iV  are positive definite. Here C  is a function of the values 

1,2 2,3 1, 1, 1,1 ,, , , , , ,p p p p py y y y y y
 but does not depend on 

1,3 1,4 1, 1, , , px x x 
. This completes the 

proof. 
The distribution with density function (11) is known as Pearson distribution of the 

second type (see [4]) and also as power semicircle distribution (see [3]). Random variables 
with this distribution can be easily generated (see [4], p. 481) using the quotient of the dif-
ference and the sum of two Gamma distributed random variables. 

For every 3p  realizations 
1,3 1,4 1, 1, , , pz z z 

 of a random variable with density function 

(11) by formulas (8) – (10) we get a realization 
1,3 1,4 1, 1{ , , , }px x x x  of a random vector 

1,3 1,4 1, 1{ , , , }p   ξ  with density function (6). 

If 1x , …, Nx  are N  realizations of ξ  then according to (7) 
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