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MARGINAL DENSITIES OF THE WISHART DISTRIBUTION
CORRESPONDING TO CYCLE GRAPHS!

Evelina Veleva

Angel Kanchev University of Ruse

Abstract: The aim of the paper is to suggest a technique for the calculation of marginal densities of
the Wishart distribution, corresponding to cycle graphs. Each non-decomposable graph consists of at least
one cycle with 4 or more edges. Using the results for decomposable graphs, it is shown how by Monte Carlo
method for numerical integration a marginal density, corresponding to any cyclic graph can be computed at a
given point.

Keywords: Wishart distribution, non-decomposable graph, marginal density, covariance matrix,
graphical Gaussian models

INTRODUCTION

The distribution of the sample covariance matrix for a sample from a multivariate
normal distribution is derived in 1928 by Wishart ([11]) and is known as the Wishart distri-

bution. It is a multivariate generalization of the ;(2( chi-square) distribution and is present
in almost all textbooks on multivariate statistical analysis. Wishart distribution is subject to

research and generalization since its introduction in 1928 until now. The study of this dis-
tribution is relevant and up to date as evidenced by the publication of more new materials
on the subject (see e.g. [1], [6], [7]). A PXx P random matrix with Wishart distribution
W, (n,Z), where p<n+1and X is a positive definite Px P matrix, has probability den-
sity of the form

fp,n,z (W) = L

221" (n/2)(detX)
for every real px p positive definite matrix W, where I' () is the multivariate Gamma

function defined as Fp(y)=7z'p(p_1)/4H?:1F[}/+(l— 1)/2] and det(-), tr(-) denote the

determinant and the trace of a matrix. When the observed multivariate normal distributed
random variables are mutually independent, 2 as well as its inverse > are diagonal ma-
trices. We shall denote the elements of the matrix X by o"/. The equality "' =0 means
that the corresponding pair of variables X; and Xj are conditionally independent given all
other p—2 variables. The presence of conditional independence between pairs of factors

given the others underlies graphical Gaussian models ([5]). In some scientific fields, such
as genetics, majority of pairs of factors are conditionally independent given the rest. The

elements of the sample covariance matrix for which the elements of the matrix > are
non-zero form a set of sufficient statistics for the estimation of the covariance matrix X
(see [2]). When modelling covariance matrices it is sufficient to include in the model only

those covariance coefficients for which ¢! #0. The respective marginal density of the

-1
— (detvv)(n—p—l)lze—tr(vvz )2 (1)

This paper contains results of the work on project No 2015 - FPHHC - 03, financed by ,Scientific Re-
search” Fund of Ruse University.
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Wishart distribution which will be used for the estimation of the parameters of the model
can be obtained by integrating the density (1) with respect to those W, ; for which o' =0.

By integrating the density (1), some marginal densities of the Wishart distribution are
derived in [8] in explicit form. The bounds of the integration however, cannot always be

exactly obtained. Let W=(W,;) be a px p positive definite random matrix with an arbi-
trary distribution. Let M be a subset of the set {W, ;,1<i< j < p} of non-diagonal elements
of W. The marginal density f.c. obtained after integration of the density function of W
with respect to the variables from M, can be represented by a graph G ,, with the set of
vertices V ={L...., p}. For every element W, ; of the set {W, ;,1<i< j<p}\M we draw in the
graph an undirected edge between the vertices ,i” and , j”. For instance, the graph on
Figure 1 presents the joint (marginal) density of the random variables from the set
N, W, 3 W, W, 6 W g W, W 6, W} For a graph with p=8 vertices, the number of all
possible edges is CB2 =28. In this case the set M consists of the rest 20 variables with
respect to which the density function of W is integrated.

Fig.1. Cycle graph Fig.2. Decomposable graph

The next Proposition is proved in [9].

Proposition 1. The bounds of the integration of the density function of W with re-
spect to all the elements of M can be exactly obtained if and only if the corresponding
graph G_,, is decomposable.

We shall recall some basic concepts from graph theory (see [5]). Let G=(V,E) be a
graph with a finite set of vertices V and a set of undirected edges E. G is called a com-
plete graph if every pair of distinct vertices is connected by an edge. A subset of vertices
U cV defines an induced subgraph G, of G which contains all the vertices U and any
edges in E that connect vertices in U . A clique is a complete subgraph that is maximal,
that is, it is not a subgraph of any other complete subgraph.

Definition 1. A graph G is decomposable if and only if the set of cliques of G can be

i-1
ordered as (C,, C,,..., C,) so that for each 1=2,.. ,k if § —Cin(UCJ} then S, cC, for
j=1
some | <i.
For a decomposable graph G_,,, if "1 =0 for every element \/\/i’j of M, the marginal

density fMC of the Wishart distribution has a compact form, derived in [9] and given below
by Proposition 2. For an arbitrary pxp matrix A and a subset ac{l2,..., p} we shall

IPROCEEDINGS OF THE UNION OF SCIENTISTS — RUSE VOL. 12 / 2015] 16
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denote by AJa] the submatrix of A, composed of the rows and columns with numbers
from . By |a| we denote the number of elements of a set «.

Proposition 2. Let W=(W, ;) has Wishart distribution W, (n,XZ) and M be a sub-
set of the set {W ;,1<i < j< p} of non-diagonal elements of W. Let ¢"! =0 for every ele-
ment W,; of M. Let the graph G, be decomposable with k cliques C,, C,,..., C, or-

dered according to Definition 1 and V; be the set of vertices of C,, i=1,...,k. Then the joint
density f . of the elements of the set M ={W, ;[ 1<i<j<p}H\M can be written in the
form
K
L1 finspn (WMD)
e (W) =2 @)

Hf\u\nz[u (WU, ])
where W, =(W ) is a pxp symmetric matrix such that w; =0 for W, eM; f (W) is
the Wishart denS|ty function given by (1) and U, =(V, .. uV 1)m 1=2,...,k.

Obtaining of marginal densities corresponding to non-decomposable graphs is dis-
cussed in [8]. According to Proposition 1, they cannot be expressed in explicit form. For a

non-decomposable graph G ,, the marginal density f yc can be calculated numerically for
every set of fixed values for the random variables from the set M ={W, pl<i<j<pH\M.
These values can be written in the form of a matrix W,, where the elements corresponding
to the elements of M are zeros. For the calculation of f . (W) in [10], the using of Monte
Carlo method for numerical integration is suggested. Let M, and M, be sets such that

1) M,cMcM, c{W;,1<i< j<p} and the densities fMlc and fM2C correspond to

decomposable graphs;
2) the density fM UL where L=M\M,, corresponds to a decomposable graph.
2 Y

The choice of M, and M, is not unique and is always possible. Then ch(Wo) can
be written as

(W,,x)
fyc (Wo) = IQ(TO) g(Wo, x) dx, ©)

where D is the domain of definition of ch, the integration is with respect to all variables
1
from the set L and g(W,,X) is a probability density function on D. In [10], g(W,,X) is pro-

posed to be the conditional probability density function

fMguL(WO’X)
g(Wo,x) = fL/MZC (W, X) :W,

derived by Proposition 2 under the condition that ¢! =0 for every element V\/i'j of M,. By

(4)

@3), f,c(W,) is presented as the expectation of the random variable

fLe (W5,
g(W,,8)

IPROCEEDINGS OF THE UNION OF SCIENTISTS — RUSE VOL. 12 / 2015] 17
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where & is a random vector with density function g(W,X). Hence f .(W;) can be esti-

mated by the mean value of a large number of realizations of (5). The main difficulty there-
fore is the generation of realizations of a random vector £ with a given probability density

function g(W,,x). Each non-decomposable graph consists of at least one cycle with 4 or

more edges. The aim of this paper is to be applied the proposed approach for the calcula-
tion of marginal densities of the Wishart distribution, corresponding to cycle graphs with
any number of edges, greater than 3.

MARGINAL DENSITIES CORRESPONDING TO CYCLE GRAPHS
Let W be a random matrix with Wishart distribution Wp (n,Z). Let us consider the

joint density of the variables from the set M®={W,,,W,;W,,,..., W, ,,W Wi oW, 1

pflvp, 1vp’
presented by the continuous edges on the graph of Figure 2. We have to choose the sets
M; and M,, M,cM cM, c{W, ;,1<i< j<p}, such that the densities f . and f . cor-
! 1

2
respond to decomposable graphs. The density fM e where L=M\M,, also have to cor-
27V

respond to a decomposable graph. This conditions will be satisfied if we choose
L={W,35, W, Ws,...,.W, ., } so that M is presented by all edges on the graph of Figure 2

and M7 =M \{W, }. Let V5, Vosrn Yo Yips Yire--Yp,p DE fixed values for the random
. C - - 2 - -
variables from the set M™~. We suppose that y,; >0 for i=] and y,y;;>V;; for i=],
otherwise these values cannot be elements of a positive definite matrix. Let us denote by
W, the matrix W, =(w/;) such that
W = yi; W eM°® orW; eM¢® .
1o otherwise
The variables X ;,%,,...,% ,,correspond to the elements of the set L with respect to
which we have to integrate the density fMlc . Let W, be the matrix W, =(W’;) such that
) %,; IfW,;elLorW; el
W = ' ' o
RS otherwise
The graph G, , shown on Figure 2, is decomposable with p-2 cliques C;,
i=1...,p—2 with sets of vertices V,={Li+1i+2}, i=1...,p—2. Assuming c"' =0 for
W, ; €M, according to Proposition 2, the density fMC has the form
1

ﬁ fn 2 (WAIVD)
fue (W) =25

F2 nzug (WalUiD)
i=2
where U, ={Li+1}, i=2,...,p-2.
The probability density function g(W,)=g(W,,x) will be computed under the condi-
tion that o =0 for every element W,; of M,. The graph G, is decomposable with p-1

cligues with sets of vertices T, ={i,i+1}, i=1,..., p—1 respectively. Therefore, according to
Proposition 2

IPROCEEDINGS OF THE UNION OF SCIENTISTS — RUSE VOL. 12 / 2015] 18
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ﬁfm]wv M)
szc (Wo) = izl

F1n sy (Wo [{I}])
i=2
The graph, corresponding to the marginal density szcuL consists of all edges on Fig-

ure 2 except the edge connecting the vertices 1 and p. This graph is decomposable with
p—2 cliques with sets of vertices V;, i=1...,,p—3 and T, respectively. Consequently

Fynsir oy LT DE T Frnsnn (WD
f i=1

MS UL (Wx) = = ,
oo (WL —1}]>Ij £ e (WU

szCuL (W) _ (ﬁ f3'n’2M](WX[Vi])j[ﬁ flan,z[{i}](wx [{l}])j

hence

gW,) = f e (W) = = (6)
L/M; f . WO -3
we (1) ( Fynson (WU, ])j[f‘[ Fynsn, (W, rr])j
Each realization of the random variable (5) will have the form
fo (WX) 3 i:[ fz,n,E[Ti] (W()[-I-I]) fs,n,z[vp_z](wx [foz]) (7)

S [T (WD | P (2D

For the calculation of (7) we must have a realization X ={X,%,...,% ,,} of a random
vector £={¢& 5,4 4.....& ,o} With density function (6). Let us consider the transformation

1
X3 = y_|:y1,2 Yozt 21,3\/(Y1,1y2,2 - yfz)(Yz,z Y33~ y22,3)] ’ ©
2,2
1 2 3
Xig= y_[xls Yaat 21,4\/(yl,1Y3,3 =% 3)(Ya3Yaa~ y3'4)J ’ ®
33
1
Xpa = y [Xl p-2Yp-2p1F L p- 1\/(y11yp 2,p-2 X1 p- 2)(yp 2.0-2Yp1p1 yp 2P~ 1)] (10)
p-2,p-2

The inverse transformation is
7 X1,3 y2,2 - yl,2 y2,3

1 \/(y1,1y2,2 ~ Y22 ) (Yo Va5~ Yo3) 1
_ Xi4Y33 = *13Y34
\/(y1,1y3,3 - X12,3)(3/3,3 Yaa— y§4) |
X1, pflyp72, p-2 X1, p-2 yp—2, p-1 _
\/ ( Yi1Yp2p2— X12,p—2)(yp—2, p-2Yp1pa ™ yé-z, p—l)

L pa =

It is easy to see that all elements above the main diagonal in the Jacobian J,
_ (23 24T
(X3 Xiare e X pt)

IPROCEEDINGS OF THE UNION OF SCIENTISTS — RUSE VOL. 12 / 2015] 19
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07,0z, 04 p-1

detJ =
O%30%4  OXpy
_ Y22 Y33 v
B 2 2 2 2y
\/(yl,1y2,2 - y1,2)(y2,2 Yas— YZ,s) \/(y1,1y3,3 - X1,3)(y3,3y4,4 - y3,4)

y [ Taetcw gD
X P2p2 = = V2, . 72"
\/ (yl,lyp72, p-2 X1, p72)(yp72, p-2 ypfl, p-1— yp72, p—l) (H det(WX[Ti ])j Ujdet(wx[ui ])j

Theorem 1. Let z,,,7,,...,,2,,, be realizations of independent and identically distrib-

uted random variables ¢, ;,¢, ,,...,¢; ,; With density function
r(n—lj
2
2 (o)
2 2
Then the variables X 3, % ,,...,% ,, defined by equalities (8) — (10) are realizations of

random variables & ,,& ,,...,& ,, With joint density function (6).
Proof. The joint density function of the random variables ¢, ;, ¢ 4,...,¢; 4 1S

n4
2

(1-2%) 2, ze(-11). (11)

na
2

p-3
f (23240002 p4) = — 1 (1-z%5) 2 @-27,) 2 ...(1- pr—l)
%2

2 2
for 2, e(-11), i=3,...,p—1. Using (8), it is easy to check that

yl,l yl,2 X1,3 1

det| Vi, Yoo VYas =y—(y1,1y2,2 = Y1) (Va2 Yas — Yaa) -2
Xz Y23 Va3 22

Consequently 1-z2, = Yo UWLIVS]) :

© det(W,[T]) det(W,[T,])

Analogously, for i=2,...,,p—3

Yii X X

det| X1 Yiwia  Yiewino =y_i_(y1,1yi+1,i+1—><fi+1)(yi+1,i+1yi+z,i+2—yiil,m)(l—zliz)
Xiiv2  Yissizz  Yiszie2 S
and hence for i=2,...,p-3
2 Yinin dEt(W V1)

1-77,, = :
T det(W [, det(W,[T,., 1)
The joint density of the random variables & ;,&,.....& ,, gets the form

p-3
(")
det J x

Fe(Xe Xar X o) = r(”‘zjr(lj

2 2
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14
2

Y,,, det(W,[V,]) Ys5 det(W,[V,])  Ypope det(W, [V, 5])
det(W,[T,1) det(W,[T,]) "det(W,[U,]) det(W,[T,]) ~ det(W,[U, ;1) det(W,[T, ,])

n-2 4
2 2

) r[”z—lj @jdet(wo[{i}])j (deet(wx[vi])J
(")) [ﬁdet(wom)f .(ﬁdet(wx[ui])j

With respect to the variables X 3, X 4,....% ,, the density function g(W,), given by (6),
can be written in the form

(ﬁdet(vvxwi])jz
g (Wx) =C =

@jdet(wxwi])jz

if the matrices W,[V,] are positive definite. Here C is a function of the values
Yi2s Yogzre 1 Ypap Yipr Yazr---Yp,p DUt dOES NOt depend on X 5, %,,,.... % , 4~ This completes the
proof.

The distribution with density function (11) is known as Pearson distribution of the
second type (see [4]) and also as power semicircle distribution (see [3]). Random variables
with this distribution can be easily generated (see [4], p. 481) using the quotient of the dif-
ference and the sum of two Gamma distributed random variables.

For every p-3 realizations z,,z,,...,2,,, of a random variable with density function

(11) by formulas (8) — (10) we get a realization X={X 3% ,....% ,,} Of a random vector

&§={&3: &4+ & pu} With density function (6).
If X, ..., Xy are N realizations of & then according to (7)

-2
i_[ f2,n,Z[Ti ] (W()[Tl ]) f W
fMC W) = | -2 i N 3'”’2[Vp—z]( X; Np%])

._22 F1n sy (WO LT3 N T s, (W Y1)

w

n—
2

£
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MAPITMHAJNTHUA NNBTHOCTU HA PA3NPEOENEHUETO HA YULLUAPT,
CbOTBETCTBALUU HA LUUKITUMHU TPADU

EBenvHa BeneBa

PyceHcku yHusepcumem “AHeern KbHueg”

Pe3rome: Llenma Ha cmamusima e 0a rnpedroXu mexHUKa 3a U34ucriseaHe Ha MapeuHarHume
nabmMHocmu Ha pasnpedesieHuemo Ha Yuwapm, cbomeemcemeawiu Ha UUKIUYHU epaghu. Bceku Hepasso-
UM gpagh ce cbcmou om foHe eOUH UUKBI ¢ 4 unu nosedye dbeu. Vsnonsealku pedynmamume 3a pasro-
JKUMU 2pachu e rnokaszaHo Kak ¢ rnomouwma Ha memoda MoHme Kapro 3a 4YucrieHo uHmeezpupaHe, mapau-
HanHa MIbMHOCM, cbomeemcmeauwia Ha rnpou3eosieH UUKudYeH egpagh, moxe Oa 6b0e npecmemHama 8
3adadeHa MoYKa.

Knroyoeu dymu: pasnpedenieHue Ha Yulwapm, Hepasioxum epag, MapauHanHa niabmHocm, Kosa-
puayuoHHa mampuya, epachuydHu aycosu modernu.
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Requirements and guidelines for the authors -
"Proceedings of the Union of Scientists - Ruse"
Book 5 Mathematics, Informatics and Physics

The Editorial Board accepts for publication annually both scientific, applied research and methodology
papers, as well as announcements, reviews, information materials, adds. No honoraria are paid.

The paper scripts submitted to the Board should answer the following requirements:

1. Papers submitted in English are accepted. Their volume should not exceed 8 pages, formatted
following the requirements, including reference, tables, figures and abstract.

2. The text should be computer generated (MS Word 2003 for Windows or higher versions) and printed in
one copy, possibly on laser printer and on one side of the page. Together with the printed copy the author
should submit a disk (or send an e-mail copy to: vkr@ami.uni-ruse.bg).

3. Compulsory requirements on formatting:

_ font - Ariel 12;

_ paper Size - A4,

_ page Setup - Top: 20 mm, Bottom: 15 mm, Left: 20 mm, Right: 20mm;

_ Format/Paragraph/Line spacing - Single;

_ Format/Paragraph/Special: First Line, By: 1 cm;

_ Leave a blank line under Header - Font Size 14,
Title should be short, no abbreviations, no formulas or special symbols - Font Size 14, centered, Bold, All
Caps;

~ One blank line - Font Size 14;
Name and surname of author(s) - Font Size: 12, centered, Bold;

~ One blank line - Font Size 12;
Name of place of work - Font Size: 12, centered,;

"~ One blank line;

" abstract — no formulas - Font Size 10, ltalic, 5-6 lines ;

" keywords - Font Size 10, Italic, 1-2 lines;

~ one blank line;

_ text - Font Size 12, Justify;

references;

contact address - three names of the author(s) scientific title and degree, place of work, telephone

number, Email - in the language of the paper.

_4. At the end of the paper the authors should write:

_ The title of the paper;

_ Name and surname of the author(s);
abstract; keywords.
Note: The parts in item 4 should be in Bulgarian and have to be formatted as in the beginning of the paper.
5. All mathematical signs and other special symbols should be written clearly and legibly so as to avoid
ambiguity when read. All formulas, cited in the text, should be numbered on the right.

6. Figures (black and white), made with some of the widespread software, should be integrated in the text.
7. Tables should have numbers and titles above them, centered right.

8. Reference sources cited in the text should be marked by a number in square brackets.

9. Only titles cited in the text should be included in the references, their numbers put in square brackets.
The reference items should be arranged in alphabetical order, using the surname of the first author, and
written following the standard. If the main text is in Bulgarian or Russian, the titles in Cyrillic come before
those in Latin. If the main text is in English, the titles in Latin come before those in Cyrillic. The paper cited
should have: for the first author — surname and first name initial; for the second and other authors — first
name initial and surname; title of the paper; name of the publishing source; number of volume (in Arabic
figures); year; first and last page number of the paper. For a book cited the following must be marked:
author(s) — surname and initials, title, city, publishing house, year of publication.
10. The author(s) and the reviewer, chosen by the Editorial Board, are responsible for the contents
of the materials submitted.
Important for readers, companies and organizations
1. Authors, who are not members of the Union of Scientists - Ruse, should pay for publishing of materials.
2. Advertising and information materials of group members of the Union of Scientists — Ruse are published
free of charge.
3. Advertising and information materials of companies and organizations are charged on negotiable
(current) prices.
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