
 Informatics

B O O K 5 M A T H E M A T I C S , IN F O R M A T I C S A N D P H Y S I C S V O L . 15 / 2018

34

web: suruse.uni-ruse.bg

HOME AND OFFICE SECURITY TRACKING VIA MOBILE DEVICES

Valentin Velikov, Dimitar Mihaylov

Angel Kanchev University of Ruse

Abstract: This paper presents a method for combining different technologies (both hardware and
software) to obtain a fully functional application that monitors multiple sensors over the Internet and displays
information on them on a mobile device. The architecture, basic principles and basic components of the
application are presented. The system is designed to demonstrate some advanced technologies and
techniques in the subject area.

Key words: Computer Science, home and office security, Internet of Things, Android, Cordova,
React, NodeMCU, MQTT.

INTRODUCTION
Mobile devices are an irreplaceable part of our daily life. They perform a variety of

functions. And while at first they were just mobile phones or highly specialized devices,
today's smartphones are multifunctional, adding new features and new applications to
them.

One possible application is remote monitoring of various security sensors in different
premises, both at home and in public areas: offices, warehouses and production facilities,
etc. Depending on the sensors used, fire and chemical safety, burglary and unauthorized
traffic, floods, weathering, electric shocks, etc. can be monitored. Depending on the
objectives set for the system, it is possible to organize and send an appropriate controlling
effect to an actuator after receiving a corresponding message from the sensor.

RELATED WORK
Several other similar applications have been explored before creating this security

tracking system: iSmartAlarm [3], Vivint Smart Home [1], Smanos W020I [2] and more.
Each of them has its own advantages and disadvantages that have been analyzed and on
this basis it has been decided what functionalities the current application should have.
Most of them are commercial, they are very closed, so it is difficult to personalise their
functionality and connect or integrate with others applications, to increase or change the
functionality.

DETAILED DESCRIPTION
The aim of this project is to create a decentralized open source system that enables

remote communication between a mobile application and a wireless network with
connected hardware devices with attached sensors that monitor various atmospheric
indicators - temperature, humidity, gas concentration fumes and more. A motion sensor to
detect physical access to the premises where the system is installed is also present in the
system.

Mobile apps and devices must be able to communicate remotely - connected to
different networks. For example, hardware devices are installed at home connected to the
home wireless network and the mobile application is running outside home where the
device on which it is installed (phone / tablet / laptop) is connected to the network of a
mobile operator or other Internet network.

The build-up of the system should be based entirely on other libraries and open
source platforms to provide full access to the source code of all the components in it. This
gives flexibility and the ability to easily integrate with other systems, as well as

 Informatics

B O O K 5 M A T H E M A T I C S , IN F O R M A T I C S A N D P H Y S I C S V O L . 15 / 2018

35

opportunities for future build of other products to extend the quality and scope of work of
this system to the specific needs of businesses and households. It is also possible to add
additional data security mechanisms where needed.

The purpose of the system is to transmit real-time sensor data without storing large
amounts of data for users, but only keeping the last important messages (for example, the
latest reported device traffic, the latest sensor data) to prevent theft of personal data and
user-sensitive information - in case of a hacker attack. If the information required by the
sensors is to be stored, the system must allow for the construction of an additional module
of such design that can be integrated in an easy and convenient manner without disturbing
the performance of the other components.

1. Choosing technology to develop the hardware prototype
The NodeMCU platform, which is an open-source project used for various products

that are part of the concept of Internet of Things, is chosen for the prototype development
of the device.

ESP8266 is the microcontroller that NodeMCU works with, using the “Espressif
systems” library, the Espressif nonOS SDK, which is a set of wireless networking
interfaces and layers of the TCP/IP model. There are also interfaces for working with input
pins and other hardware components. NodeMCU is a set of libraries for working with
various components of the ESP8266 microcontroller and its varieties. The libraries
themselves are written in C, enabling developers to use LuaScript in their programs [7], as
the language is extremely fast and convenient to describe communication in real-time
systems. For a more convenient use of the microcontroller, the system uses the
NodeMCU-DEVKIT-V1.0 board, which is an extension of the ESP microcontroller, with the
ability to connect it via a USB port that can be used as power and for uploading source
files to the controller. The development of NodeMCU-DEVKIT is open source hardware
with 4MB flash memory.

LuaScript - a light and fast scripting programming language written in ANSI C, which
enables it to work on many platforms. It was developed by Roberto Jerusalemci in 1993 in
Rio, Brazil as a language to extend the capabilities of managing other more sophisticated
systems and allow easier and convenient script development to manage them. To date,
language has developed a lot, currently using version Lua. It is classified as a “multi-
paradigm programming language” or a multi-purpose programming language. There is no
object-oriented programming in the basics of the language, but Lua is very flexible and
some of the PLO's capabilities can be further developed.

LuaScript has many features of the functional languages. The concept of "functions
as first class citizens" is very strong, which allows the functions to be passed as
parameters, to be returned as a result of performing other functions, to be assigned to
variables, and to be part of different data structures.

The implementation of the hardware prototype also requires input data sensors that
the controller will process. They include:

 PIR Sensor - Passive infrared sensor, based on radiated radiation (objects with
temperature above the absolute zero, emit heat in the form of radiation). The sensor has
two states - 0 and 1, when the state changes, it causes an interruption of the input pin to
which it is hooked.

 MQ-2 Smoke Sensor. The MQ series of gas sensors use a built-in small heater
with an electrochemical sensor. They are sensitive to different gases and are used indoors
at room temperature. The output of the pins to which the sensor is attached is an analogue
signal passing through the ADC (analog to digital converter) and converted to a value

 Informatics

B O O K 5 M A T H E M A T I C S , IN F O R M A T I C S A N D P H Y S I C S V O L . 15 / 2018

36

between 0 and 1023, where 0 is the lowest gas vapor concentration, and 1023 is the
highest.

 DHT11 is a temperature and humidity sensor. NodeMCU has a reading library for
DHT sensors [7].

For demonstration purposes, these sensors are used as they are widely available.
When integrating the system, it is recommended to use other more precise sensors in
cases where this is necessary.

2. Choosing mobile application development technologies
The developed application is for the Android operating system, but with the idea that

the project code can be easily used on other platforms. To this end, the Cordova Library,
which is an Open Source product of the Apache Foundation, has been selected.

Cordova enables a Web - based product written in HTML, CSS and JavaScript to be
packaged and installed as a mobile application running on many operating systems.
Cordova is a Software Bridge that allows you to access JavaScript via interfaces to work
with the built-in functionality of different operating systems - Android, iOS, Windows
Phone, etc., through open source plug-ins developed by Cordova developers or other
community programmers around this ecosystem. In this way, it is possible to reuse a large
part of the code written in JavaScript when transferring applications from one operating
system to another [5].

This approach accelerates the workflow by allowing a significant part of the
development and testing of a mobile application to be done directly in a browser on a
computer without booting an emulator or using a real mobile device. An application
created with Cordova is called "hybrid" - a combination of a web-based and mobile
application [8].

JavaScript is a fast scripting language supported by modern browsers. It was created
in 1995 in "Netscape", with the idea of giving dynamics to the visualization of web pages.
The language has evolved over the years and is now used in the development of server
programs, embedded systems and mobile devices.

For the purpose of the project the latest version of EcmaScript6 is used, which
possesses many syntax changes and features that bring it closer to some functional
programming languages. One of these options allows the use of generator functions.
These are functions (sub-programs) whose execution can be stopped and extended when
an event occurs, and between these calls the function keeps its state. This technique is
particularly suited to the development of systems that handle real-time events, for example
- the generator detects that a sensor data message has been received - the data is
processed and the generator function waits for the next call [4].

To implement the components of the user interface, it was decided to use the
React.js library. It was created by "Facebook" to solve the problem of the complex data
flow in one application and the change of states of the various components in it. React
offers a declarative way of describing components in the user interface by realizing a tree
structure where each component can be modified only by the data it receives from its
parent.

React is a library that manages user interface components, but it can hardly be used
on its own and needs integration with technology that allows data management in the
application. Such technology is provided by the Redux library, which is very closely
integrated with React. Redux takes care of the status (application data) and provides a
universal way to change them - through reducers functions that respond to an event
caused by user interactions with the interface or event caused by the server. Completing
these features returns the application's new state and the components are updated.

 Informatics

B O O K 5 M A T H E M A T I C S , IN F O R M A T I C S A N D P H Y S I C S V O L . 15 / 2018

37

For the processing of asynchronous events when communicating with the server, it is
decided to implement a middleware layer. This is a set of sub-programs that intercept
events and process them. This layer is implemented using the Redux-Saga library, which
provides a set of tools for working with generators and also has good integration with
Redux.

Implementing the application with these technologies allows you to store the data
status in the temporary memory of the mobile device. To save certain user settings that
are available for the next time the application is started, the local storage mechanism that
is accessed through JavaScript is used.

3. Choosing technologies to implement communication between devices
For communication between devices in the system, the Message Queue Telemetry

Transport (MQTT) protocol is selected. The MQTT is a protocol for sending and receiving
messages between different devices in real time, which runs on the principle of "publish-
subscribe". The protocol works on TCP/IP and is designed for data transfer between
remote devices, most commonly used as machine to machine protocol for projects that are
part of the concept of the Internet of Things. The implementation of the protocol is very
small in volume and makes it easy to use on many platforms (NodeMCU has a library for
working with MQTT). MQTT allows a secure connection to be established through
TLS/SSL - cryptographic protocols that provide secure internet communication [6].

MQTT communication is done using a MQTT broker-server that distributes messages
and takes care of the authorization of users who communicate and access them to
different data. The Cloudmqtt.com cloud service is used for the purpose of the project. It
allows easy configuration of communication between a group of devices and users. When
integrating into a real system environment, users can choose another MQTT broker or
integrate one on their server. Cloudmqtt.com uses the most massive implementation of
the MQTT - Mosquito Web Server. This is an open source project and can easily be
configured to run on a machine of the user's choice.

Every hardware device and person - user of the system must have an account
created in the broker to be authorized to send or receive messages.

MQTT communication is done through the topics (titles) - the equivalent of url
addresses in HTTP. Through them, the user addresses messages that they send (publish)
or who they want to subscribe to. The structure of the titles is determined when designing
an application. MQTT allows them to declare access to different data to different users.
For example, if user832 is given access to topic - device292922/temperature, he will
receive all the messages sent with this topic. If he/she is given rights for topic -
device292922/#, he/she will receive all messages sent with a title beginning with
device292922/.

The MQTT protocol as a standard for communication is particularly suited for
systems that involve real-time data transfer between physical devices, as a built-in
notification capability for loss of Internet connectivity on a device, as well as guarantee
mechanisms of delivery of a message - extremely important for security systems. Part of
the MQTT standard is also the ability to keep an important message from a topic, such as
the last reported motion from a sensor [3].

4. Communication architecture between devices, server and mobile clients
The diagram in Fig. 1 illustrates the communication model that is used to implement

the system. A particular instance of the system is shown where a user through a mobile
device remotely monitors data from sensors that are located on a single local area
network. The system also allows for tracking of groups of devices that are connected to

 Informatics

B O O K 5 M A T H E M A T I C S , IN F O R M A T I C S A N D P H Y S I C S V O L . 15 / 2018

38

different networks. It is also possible to monitor devices from more than one user. Each of
the hardware devices is independent and can work independently.

To connect a hardware device to the server, it is necessary to have a pre-created
account in the broker and its username and password stored in the device's configuration
file. There are also the parameters of the MQTT broker - the address and port to which
the MQTT client can connect. The advantage of this communication model is that the
device cannot be accessed from the outside as it does not open a port on which the device
listens but initiates a connection to a server port.

device with
sensors

device with
sensors

device with
sensors

device with
sensors

Authorization
(username, password)

CloudMQTT.com
MQTT Broker

Instance of Mosquito web server

subscribe for messages Data sending
from devices

Authorization
(username, password)

Topic [deviceID]/motion

Topic [deviceID]/temp-hum

Topic [deviceID]/gas

Topic [deviceID]/connectivity
sending data about

internet connectivity

sending data
from sensors

Fig. 1. Architecture of communication in the realized system

After the initial connection, the MQTT client that is created on the device can send

messages to the server. Each message is addressed with a topic that has the following
structure:

deviceId / message_type
• deviceId – device ID
• message_type – type of the message (connectivity, gas, temp-hum, motion)
MQTT communication allows sending messages from certain devices and

subscribing and receiving these messages from other devices. Each MQTT client can
post and receive messages, with his broker indicating the rights to which titles he has

 Informatics

B O O K 5 M A T H E M A T I C S , IN F O R M A T I C S A N D P H Y S I C S V O L . 15 / 2018

39

access to. As a first parameter in the structure of each topic in the system, it is chosen to
be the ID of the device from where the message is sent. This makes it easier to declare
certain users access to the messages from their devices.

The declaration of rights happens on the broker, with two types of access to each
topic - access for writing and for reading. For the implementation of the system, access to
writing on a topic has hardware devices and access for reading - the users with mobile
clients.

Table 1: An example of declared rights for system integration

User Topic Reading Writing

Device789Kitchen Device789Kitchen/# False True

Device325Office Device325Office/# False True

User892 Device789Kitchen/# True False

User892 Device325Office/# True False

With these set access rights, User892 will receive data from the Device789Kitchen

and Device325Office devices. It will have access to all titles that begin with
Device789Kitchen and Device325Office.

This method of declaring access rights is very flexible and allows users in the system
to be limited and to receive data only from devices that are intended for them. The limit
may also be for a message type, for example, User892 can only be accessed by the
Device325Office/motion header. Then it will receive messages only from the motion
sensor on the device with ID Device325Office.

With each message, in addition to the title, data is also sent - a string with
information. In the system implementation all messages are sent in JSON format, as it is
extremely convenient for describing data structures when working with LuaScript and
JavaScript.

JSON or JavaScript Object Notation is a text-based open standard designed for

human-readable data exchange. It comes from the JavaScript language to represent
simple data structures and associative arrays called objects. Despite its link to JavaScript,
this is a language-independent specification.

The message structure in the system looks like this in JSON format:
{ "value": 1, "timestamp": 1494268039, "error": null }
• value – it contains the value the device sends (for example, 1 - detected motion

from the PIR sensor)
• timestamp - it contains the exact time in UTC of occurrence of the events measured

in seconds
• error – contains an error identifier for data reporting.
The MQTT communication standard supports a mechanism to save the last message

for a title. This feature is used in the implementation of the system. A flag retained is also
specified when sending a message, indicating whether this message should be retained
by the broker. If the flag has a value of 0, the message will only be received by the mobile
clients who are currently connected and have access to the message. If the flag has a
value of 1, the broker will keep this message and when the mobile client is next
connected, it will receive the message. The message will be kept on the server only until
another message with the same topic arrives. This mechanism is very convenient as it
allows the system to keep the last state of each device for each of its sensors without

 Informatics

B O O K 5 M A T H E M A T I C S , IN F O R M A T I C S A N D P H Y S I C S V O L . 15 / 2018

40

realizing storage of all data from the sensors. When a mobile client connects to the server,
it immediately receives information about each device that contains:

• The last recorded movement.
• Whether the device is online or offline.
• The last measured temperature and humidity.
• The last measured gas vapor concentration.
In the system implementation, the messages that are sent with flag retained = 1 are:
• Motion reporting.
• Measured data from each sensor.
• Internet connectivity messages.
The MQTT protocol also has provisioning mechanism to messages delivery - QOS

(Quality of Service). The protocol has 3 levels of QOS, and the highest is used for the
system implementation. This ensures that each of the messages will be delivered to
mobile customers just once.

The mechanism for Internet connection losing notification, the LWT (Last Wave and
Testament), is used. Each device configures such a message and in the event of loss of
connectivity between the server and the device, this message is sent to mobile customers.
This allows monitoring the connectivity of each device in real time.

TEST RESULTS
Functional tests have been performed for all hardware and software modules. The

identified inaccuracies were removed. All subsystems work correctly and according to the
specifications.

After the tests it is possible to conclude that the prototype of the system is reliable, it
works well and it can be successfully integrated for use in a real environment. The
architecture and implementation make it easy to maintain and use the system after the
initial installation. It allows integration of other modules and programs to extend the scope
and quality of the system. Flexibility is allowed when selecting infrastructure - servers and
devices to operate.

CONCLUSION
Many security monitoring systems are available on the market through sensors and

other devices that have a wide range of capabilities and functions. The cost of such
products is quite high and their successful integration and use is highly dependent on the
user's needs. All systems are closed and do not provide good customization capabilities to
suit the specific needs of the user. This stops other companies from developing products
that are compatible with these systems to expand their scope and quality of work.

Security systems that are offered do not allow users to choose which server their
data should pass through. Information from such security monitoring devices is extremely
important. Most users would not want to give their data freely to large companies and
organizations, as this has the risks of leakage of large amounts of information in a hacker
attack on a large system. When the information is not concentrated in one place, and each
user can choose where his data goes to, the chance to run a large amount of sensitive
information is significantly smaller.

When using commercial systems, companies and households that integrate them do
not have a good opportunity to choose the system infrastructure themselves and
customize it according to their needs.

All this provides opportunities for the implementation of decentralized systems based
on open source libraries. With a host of different hardware components, devices for
tracking and managing mechanisms across the Internet can be successfully synthesized.

 Informatics

B O O K 5 M A T H E M A T I C S , IN F O R M A T I C S A N D P H Y S I C S V O L . 15 / 2018

41

REFERENCES
[1] Aaron Tilley, Vivint Smart Home Security System, https://www.vivint.com/

https://www.forbes.com/sites/aarontilley/2016/07/06/vivint-smart-home/#53e76808525e
14.03.2018.

[2] Don Reisinger, Smanos W020 WiFi Alarm System review,
https://www.techhive.com/article/3153495/connected-home/smanos-w020-wifi-alarm-
system-review-buy-just-the-parts-you-need.html, http://www.smanos.com/w020i, 2018.

[3] iSmartAlarm Home Security System, https://www.cnet.com/products/ismartalarm/
https://www.ismartalarm.com/, 15.03.2018 .

[4] Michael Fogus, O'Reilly Media, Functional JavaScript, 2013.
[5] Nizamettin Gok, Nitin Khanna, O'Reilly Media, Building Hybrid Android Apps with

Java and JavaScript, 2013.
[6] Valerie Lampkin, Weng Tat Leong, Leonardo Olivera, IBM, Building Smarter

Planet Solutions with MQTT and IBM WebSphere MQ Telemetry, 09.2012.
[7] Documentation of libraries from the NodeMCU platform NodeMCU, Nodemcu

SDK https://nodemcu.readthedocs.io/en/master/, 20.05.2017.
[8] Documentation for using the Cordova platform for Android apps, Cordova Android

development, https://cordova.apache.org/docs/en/latest/guide/platforms/android/index.html
20.03.2018.

CONTACT ADDRESSES
Pr. Assist. Valentin Velikov,PhD Dimitar Mihaylov, BSc student
Department of Informatics and Department of Informatics and
Information Technologies Information Technologies
Faculty of Natural Sciences and Faculty of Natural Sciences and
Education Education
Angel Kanchev University of Ruse Angel Kanchev University of Ruse
8 Studentska Str., 7017 Ruse,Bulgaria 8 Studentska Str., 7017 Ruse,Bulgaria
Phone: (++359 82) 888 326, Cell Phone: (++359) 886 868 316
Cell Phone: (++359) 886 011 544, E-mail: dmihaylov93@gmail.com
E-mail: val@ami.uni-ruse.bg

https://www.techhive.com/article/3153495/connected-home/smanos-w020-wifi-alarm-system-review-buy-just-the-parts-you-need.html
https://www.techhive.com/article/3153495/connected-home/smanos-w020-wifi-alarm-system-review-buy-just-the-parts-you-need.html
http://www.smanos.com/w020i
https://www.cnet.com/products/ismartalarm/
https://nodemcu.readthedocs.io/en/master/
https://cordova.apache.org/docs/en/latest/guide/platforms/android/index.html
mailto:dmihaylov93@gmail.com
mailto:val@ami.uni-ruse.bg

 Informatics

B O O K 5 M A T H E M A T I C S , IN F O R M A T I C S A N D P H Y S I C S V O L . 15 / 2018

42

СЛЕДЕНЕ НА СИГУРНОСТТА В ДОМА И ОФИСА ПРЕЗ МОБИЛНИ

УСТРОЙСТВА

Валентин Великов, Димитър Михайлов

Русенски университет „Ангел Кънчев”

Резюме: Статията представя метод за обединяване на различни технологии (както
хардуерни, така и софтуерни) за получаване на функционално пълно приложение, което следи
през Интернет множество датчици и показва информацията от тях на мобилно устройство.
Представени са архитектурата, основни принципи и основни компоненти на приложението.
Системата е създадена за демонстрация на някои техники, съвременни технологии и прийоми в
предметната област.

Ключови думи: информатика, домашна и офис защита, Интернет на нещата, Android,
Cordova, React, NodeMCU, MQTT.

9 7 7 1 3 1 4 3 0 7 0 0 0

I S S N 1 3 1 4 - 3 0 7 7

