
PROCEEDINGS 
of the Union of Scientists - Ruse 

 
Book 5 

Mathematics, Informatics and 
Physics 

 
Volume 10, 2013 

 
 

 
 

 
 

RUSE 



MATHEMATICS,  INFORMATICS AND PHYSICS 
 

 PR O C E E D I N G S  O F  T H E  UNI O N O F  SC I E NT I S T S  –  RUS E  V O L.  10  /  2013  5

The Ruse Branch of the 
Union of Scientists in 
Bulgaria was founded in 1956. 
Its first Chairman was Prof. 
Stoyan Petrov. He was followed 
by Prof. Trifon Georgiev, Prof. 
Kolyo Vasilev, Prof. Georgi 
Popov, Prof. Mityo Kanev, 
Assoc. Prof. Boris Borisov, Prof. 
Emil Marinov, Prof. Hristo 
Beloev. The individual members 
number nearly 300 recognized 
scientists from Ruse, organized 
in 13 scientific sections. There 
are several collective members 
too – organizations and 
companies from Ruse, known 
for their success in the field of 
science and higher education, 
or their applied research 
activities. The activities of the 
Union of Scientists – Ruse are 
numerous: scientific, 
educational and other 
humanitarian events directly 
related to hot issues in the 
development of Ruse region, 
including its infrastructure, 
environment, history and future 
development; commitment to 
the development of the scientific 
organizations in Ruse, the 
professional development and 
growth of the scientists and the 
protection of their individual 
rights. 

The Union of Scientists – 
Ruse (US – Ruse) organizes 
publishing of scientific and 
popular informative literature, 
and since 1998 – the 
“Proceedings of the Union of 
Scientists- Ruse". 

 

BOOK 5 
 

"MATHEMATICS, 
INFORMATICS AND  

PHYSICS" 
 

VOLUME 10 

 

CONTENTS 
 

Mathematics 

Tsetska Rashkova ......................................................................7 
Identities of M2(E) are identities for classes of subalgebras of 
Mn(E) as well 

Antoaneta Mihova.....................................................................14 
Polynomial identities of the 3x3 matrices over the finite 
dimensional Grassmann algebra 

Eli Kalcheva ..............................................................................19 
On the existence of multiple periodic solutions of fourth - order 
semilinear differential equations 

Veselina Evtimova ....................................................................27 
Some studies on the possibilities to provide emergency medical 
aid centres with new transport vehicles  

Iliyana Raeva ............................................................................34 
System for modeling of ambiguous semantics  
 

Informatics 

Valentina Voinohovska, Svetlozar Tsankov, Rumen Rusev.....39 
Use of computer games as an educational tool 

Valentina Voinohovska, Svetlozar Tsankov, Rumen Rusev.....44 
Еducational computer games for different types of learning  

Victoria Rashkova, Metodi Dimitrov..........................................49 
Creating an E-Textbook for the Course Workshop on  
Computer Networks and Communication  

Metodi Dimitrov, Victoria Rashkova..........................................56 
Possibilities of online freelance platforms  

Galina Atanasova .....................................................................60 
Didactic aims and perspectives in computer science teaching  

Rumen Rusev ...........................................................................66 
Software system for processing medical diagnostic images 

ValentinVelikov .........................................................................72 
Automatic program generation without internal machine 
representation 

Valentin Velikov ........................................................................78 
System for automated software development  
 

Physics 

Lyubomir Lazov, Nikolay Angelov ............................................89 
Investigation of the influence of the type of surface on the quality 
of laser marking 

Nikolay Angelov, Tsanko Karadzhov ........................................96 
Optimization of the process of laser marking of metal product 

 
 



MATHEMATICS,  INFORMATICS AND PHYSICS 
 

 PR O C E E D I N G S  O F  T H E  UNI O N O F  SC I E NT I S T S  –  RUS E  V O L.  10  /  2013  

 

 

 

 

 

BOOK 5 
 

"MATHEMATICS, 
INFORMATICS AND  

PHYSICS" 
 

VOLUME 10 

Nikolay Angelov, Ivan Barzev .................................................102 
Determination of preliminary intervals of the speed of laser 
welding on electrical steel 
 
Conference ITE - 2012 

Tsetska Rashkova ..................................................................107 
Usage of the system Mathematica in teaching and learning 
number theory  

Veselina Evtimova ..................................................................115 
Using the Maple software product in studying functions  

Ralitsa Vasileva-Ivanova ........................................................124 
Plane in space with mathematical software 

Mihail Kirilov ...........................................................................130 
Use of dynamic software for sketches in Geometry lessons  

Magdalena Metodieva Petkova ..............................................136 
GeoGebra in school course in geometry 

Milena Kostova, Ivan Georgiev...............................................145 
Application of MatLab software for digital image processing 
 

 
 
 
 
 
 
 
 
 

This is the jubilee 10-th volume of book 5 Mathematics, Informatics and Physics. The 
beginning was in Spring, 2001, when the colleagues of the former section Mathematics 
and Physics decided to start publishing our own book of the Proceedings of the Union of 
Scientists – Ruse. The first volume included 24 papers. Through the years there have 
been authors not only from the Angel Kanchev University of Ruse but as well as from 
universities of Gabrovo, Varna, Veliko Tarnovo and abroad – Russia, Greece and USA. 

Since the 6-th volume the preparation and publishing of the papers began to be done 
in English. 

The new 10-th volume of book 5 Mathematics, Informatics and Physics includes 
papers in Mathematics, Informatics and Information Technologies, Physics and materials 
from the Scientific Conference ‘Information Technologies in Education’ (ITE), held at the 
University of Ruse in November 2012 in the frame of Project 2012-FNSE-02. 
 

6



INFORMATICS 
 

PR O C E E D I N G S  O F  T HE  UNI O N O F  SC I E NT IS T S  –  RU S E  V O L.  10  /  2013  
 

60

web: suruse.uni-ruse.bg 
 

DIDACTIC AIMS AND PERSPECTIVES IN COMPUTER SCIENCE 
TEACHING 

 
Galina Atanasova 

 

Angel Kanchev University of Ruse 
 

Abstract: The article discusses the scope of education in computer science and the didactic 
objectives on which the introductory courses on algorithms based on those of programming to be built. 
Attention is paid to the variety aspects of the material and the reasons how to be precisely structured its 
presentation. The paper proposes an approach of 4 levels for learning and development of skills for writing 
algorithms. It stresses on the importance students to acquire skills for writing correct and efficient algorithms 
to achieve success in programming. 

Keywords: Computer Science, Algorithm, Algorithm Teaching, Algorithm skills development. 
 

INTRODUCTION 
Computer Science is the study of principles and practices that underpin an 

understanding and modelling of computation and of their application in the development of 
computer systems [1]. At its heart the notion of computational thinking lies: a mode of 
thought that goes well beyond software and hardware and that provides a framework 
within which to reason about systems and problems. This mode of thinking is supported 
and complemented by a substantial body of theoretical and practical knowledge and by a 
set of powerful techniques for analysing, modelling and solving problems.  

Computer Science is deeply concerned with how computers and computer systems 
work and how they are programmed. Students studying computing gain insight into 
computational systems of all kinds, whether or not they include computers. It allows them 
to solve problems, design systems and understand the power and limits of human and 
machine intelligence. It is a skill that empowers and all students should be aware of and 
have some competence in. Furthermore, students who can think computationally are 
better able to conceptualise and understand computer-based technology and so are better 
equipped to function in modern society.  

Computer Science is a subject, where invention and resourcefulness are 
encouraged. Students are expected to apply the academic principles they have learned to 
understanding real-world systems and creating purposeful artefacts. This combination of 
principles, practice and invention makes Computer Science an extraordinarily useful and 
an intensely creative subject, suffused with excitement, both visceral (“it works!”) and 
intellectual (“that is so beautiful”).  

THE BASIC AIMS OF COMPUTER SCIENCE  
Education enhances students’ lives as well as their life skills. It prepares young 

people for a world that doesn’t yet exist; involves technologies that have not yet been 
invented; presents technical and ethical challenges of which we are not yet aware.  

To do this, education aspires primarily to teach disciplines with long-term value, 
rather than skills with short-term usefulness, although the latter are certainly useful. A 
“discipline” is characterised by:  

 A body of knowledge, including widely-applicable ideas and concepts and a 
theoretical framework into which these ideas and concepts fit. 



INFORMATICS 
 

PR O C E E D I N G S  O F  T HE  UNI O N O F  SC I E NT IS T S  –  RU S E  V O L.  10  /  2013  
 

61

 A set of techniques and methods that may be applied in the solution of problems 
and in the advancement of knowledge. 

 A way of thinking and working that provides a perspective on the world that is 
distinct from other disciplines. 

 Longevity: a discipline does not “date” quickly, although the subject advances. 
 Independence from specific technologies, especially those that have a short shelf-

life. 
Computer Science comprises disciplines with all these characteristics. It 

encompasses foundational principles, such as the theory of computation and widely 
applicable ideas and concepts, such as the use of relational models to capture structure in 
data [4]. It incorporates techniques and methods for solving problems and advancing 
knowledge, such as abstraction and logical reasoning, and a distinct way of thinking and 
working that sets it apart from other science areas (computational thinking). It has 
longevity (most of the ideas and concepts that were current 20 or more years ago are still 
applicable today) and every core principle can be taught or illustrated without relying on 
the use of a specific technology. 

THE KEY DIDACTIC AIM  
The key didactic aim is something that a student of Computer Science should be able 

to do and should know. In Computer Science the key processes focus upon computational 
thinking. Computational thinking is the process of recognising aspects of computation in 
the world that surrounds us and applying tools and techniques from computing to 
understand and reason about both natural and artificial systems and processes.  

Computational thinking is something that people rather do than computers and 
includes the ability to think logically, algorithmically and at higher levels recursively and 
abstractly [2]. It is, however, a rather broad term. The rest of this paper draws out 
particular aspects of computational thinking that are particularly accessible to and 
important for young people at the universities.  

A well-grounded student of Computer Science will also be proficient in other generic 
skills and processes including: thinking critically, reflecting on ones work and that of 
others, communicating effectively both orally and in writing, being a responsible user of 
computers and contributing actively to society. 

ABSTRACTION: MODELLING, DECOMPOSING AND GENERALISING  
A key challenge in computational thinking is the scale and complexity of the systems 

we study or build [2]. The main technique used to manage this complexity is abstraction. 
The process of abstraction takes many specific forms, such as modelling, decomposing 
and generalising. In each case, complexity is dealt with by hiding complicated details 
behind a simple abstraction or model of the situation. For example, the Ruse Bus Route 
map is a simple model of a complex reality — but it is a model that contains precisely the 
information necessary to plan a route from one station to another. A procedure to compute 
square roots hides a complicated implementation (iterative approximation to the root, 
handling special cases) behind a simple interface (give me a number and I will return its 
square root).  

Modelling is the process of developing a representation of a real world issue, system 
or situation, that captures the aspects of the situation that are important for a particular 
purpose, while omitting everything else. Different purposes need different models. 
Example: a geographical map of the Bus Route is more appropriate for computing travel 
times than the well-known topological Bus Route map; a network of nodes and edges can 
be represented as a picture or as a table of numbers. A particular situation may need more 



INFORMATICS 
 

PR O C E E D I N G S  O F  T HE  UNI O N O F  SC I E NT IS T S  –  RU S E  V O L.  10  /  2013  
 

62

than one model. For example a web page has a structural model (headings, lists, 
paragraphs) and a style model (how a heading is displayed, how lists are displayed). A 
browser combines information from both models as it renders the web page.  

A problem can often be solved by decomposing it into sub-problems, solving them 
and composing the solutions together to solve the original problem. For example “Make 
breakfast” can be broken down into “Make toast; make tea; boil egg”. Each of these in turn 
can be decomposed, so the process is naturally recursive. The organisation of data can 
also be decomposed. For example, the data representing the population of a country can 
be decomposed into entities such as individuals, occupations, places of residence, etc.  

Sometimes this top-down approach is the way in which the solution is developed but 
it can also be a helpful way of understanding a solution regardless how it was developed in 
the first place. For example, an architectural block diagram showing the major components 
of a computer system (e.g. a client, a server, and a network) and how they communicate 
with each other, can be a very helpful way of understanding that system.  

Complexity is often avoided by generalising specific examples, to make explicit what 
is shared between the examples and what is different about them. For example, having 
written a procedure to draw a rectangle of sizes 2 and 4 and another to draw a rectangle of 
sizes 3 and 5, one might generalise to a procedure to draw a rectangle of any sizes N and 
M, and call that procedure with parameters 6 and 7 respectively. In this way much of the 
code used in different programs can be written once, debugged once, documented once, 
and (most important) understood once. A different example is the classification 
encouraged by object-oriented languages, whereby a parent class expresses the common 
features of an object, for example, the size or colour of a shape, while the sub-classes 
express the distinct features (a square and a triangle, perhaps). This process may be 
called generalisation. It is the process of recognising these common patterns and using 
them to control complexity by sharing common features. 

PROGRAMMING  
Computer Science is more than programming, but programming is an absolutely 

central process for Computer Science. In an educational context, programming 
encourages creativity, logical thought, precision and problem-solving and helps foster the 
personal, learning and thinking skills required in the modern university curriculum. 
Programming gives concrete, tangible form to the idea of “abstraction” and repeatedly 
shows how useful it is [5]. 

Every student should have repeated opportunities to design, write, run and debug 
executable programs [3]. What an “executable program” means can vary widely, 
depending on the level of the students’ skills and the amount of time dedicated for. In 
some cases the ability to understand and explain a program is much more important than 
the ability to produce working but incomprehensible code [4]. Depending on level of their 
skills, students should be able to: 

1. Design and write programs that include  
 Sequencing: doing one step after another.  
 Selection (if-then-else): doing either one thing or another. 
 Repetition (Iterative loops or recursion). 
 Language constructs that support abstraction: wrapping up a computation in a 

named abstraction, so that it can be re-used. (The most common form of abstraction is the 
notion of a “procedure” or “function” with parameters.). 

 Some form of interaction with the program’s environment such as input/output, 
or event-based programming. 

2.  Find and correct errors in their code.  



INFORMATICS 
 

PR O C E E D I N G S  O F  T HE  UNI O N O F  SC I E NT IS T S  –  RU S E  V O L.  10  /  2013  
 

63

3. Reflect thoughtfully on their program, including assessing its correctness and 
fitness for purpose; understanding its efficiency and describing the system to others.  

Effective use of the abstraction mechanisms supported by programming languages 
(functions, procedures, classes, and so on) is central to managing the complexity of large 
programs. For example, a procedure supports abstraction by hiding the complex details of 
an implementation behind a simple interface. These abstractions may be deeply nested, 
layer upon layer. Example: a procedure to draw a rectangle calls a procedure to draw a 
line; a procedure to draw a line calls a procedure to paint a pixel; the procedure to paint a 
pixel calls a procedure to calculate a memory address from an (x, y) pixel coordinate. As 
well as using procedures and libraries built by others, students should become proficient in 
creating new abstractions of their own. A typical process is: 

 Recognise that one is writing more or less the same code repeatedly. Example: 
draw a rectangle of sizes 2 and 4; draw a rectangle of sizes 3 and 5.  

 Designing a procedure that generalises these instances. Example: draw a 
rectangle of sizes N and M. 

 Replace the instances with calls to the procedure. At a higher level, recognising 
a standard “design pattern”, and re-using existing solutions, is a key process. For example: 
simple data structures, such as variables, records, arrays, lists, trees, hash tables. 

 Higher level design patterns: divide and conquer, sorting, searching, 
backtracking, recursion. 

Students also must have abilities for debugging, testing, and reasoning about 
programs. When a programmed system goes wrong, they have to answer the question 
“How can I fix it?” Computers can appear so opaque that fault-finding degenerates into a 
demoralising process of trying randomly generated “solutions” until something works. 
Programming gives students the opportunity to develop a systematic approach to 
detecting, diagnosing and correcting faults, and to develop debugging skills, including: 

 Reading and understanding documentation. 
 Explaining how code works or might not work. 
 Manually executing code, perhaps using pencil and paper. 
 Isolating or localising faults by adding tracing. 
 Adding comments to make code more human readable. 
 Adding error checking code to check internal consistency and logic. 
 Finding the code that causes an error and correcting it. 
 Choosing test cases and constructing tests. 

A SYSTEMATIC APPROACH IN LEARNING COMPUTER SCIENCE 
At the university level of education we need to ensure the process with a systematic 

approach in knowledge acquiring. Data structures and algorithms are important foundation 
topics in Computer science education. Students deal with algorithms in many computer 
science courses and so they must be equipped with solid skills in algorithms [6]. We 
suggest a progressive building on approach for algorithm teaching, divided in four levels, 
presenting below. Each level upgrades the knowledge acquired on the previous one.  

Level 1 introduces the algorithm concept by following explanations: 
 Presenting the algorithms as they are sets of instructions for achieving goals, 

made up of pre-defined steps. Example: a recipe for making fried eggs.  
 Algorithms can be represented in simple formats narrative text. 
 They can describe everyday activities and can be followed by humans and by 

computers.  
 Computers need more precise instructions than humans do.  



INFORMATICS 
 

PR O C E E D I N G S  O F  T HE  UNI O N O F  SC I E NT IS T S  –  RU S E  V O L.  10  /  2013  
 

64

 Steps can be repeated and some steps can be made up of smaller steps.  
Level 2 enriches the basic concepts from the previous level 1 with forming the 

following skills: 
 Algorithms representation symbolically (flowcharts) or using instructions in a 

clearly defined language.  
 Building algorithms that include selection (if) and repetition (loops).  
 Algorithms decompositions into component parts (procedures), each of which 

itself contains an algorithm.  
At this level 2 students should also be able to make: 
 Algorithms should be stated without ambiguity and care and precision are 

necessary to avoid errors.  
 Algorithms are developed according to a plan and then tested. Algorithms are 

corrected if they fail these tests.  
 It can be easier to plan, test and correct parts of an algorithm separately. 
The next level 3 comprises the described below concepts: 
 An algorithm is a sequence of precise steps to solve a given problem.  
 A single problem may be solved by several different algorithms.  
 The choice of an algorithm to solve a problem is driven by what is required of 

the solution (such as code complexity, speed, amount of memory used, amount of data, 
the data source and the outputs required). 

 The need for accuracy of both algorithm and data. 
The last final level 4 turns significant milestones for the following students’ skills: 
 The choice of an algorithm should be influenced by the data structure and data 

values that need to be manipulated. 
 Familiarity with several key algorithms (sorting and searching). 
 The design of algorithms includes the ability to easily re-author, validate, test 

and correct the resulting code. 
 Different algorithms may have different performance characteristics for the same 

task. 

CONCLUSIONS AND FUTURE WORK 
Future plans are to investigate the suggested four level approach in teaching 

algorithms for students that learn computer science. Currently, we use the pedagogy 
based on operational theories approach of learning development [7]. It will be in favor of 
education quality the two approaces to be compared. Of particular interest are the solving 
problems principles of suggested approach teaching pedagogy. However, this idea is still 
in the initial stages of development and much more work is needed. Firstly, further 
research is needed to refine the ideas regarding this teaching approach and how it can 
best be used to aid in the delivery of the introductory concepts of programming. 

 

REFERENCES 
[1] Byrne, P. & Lyons, G., The effect of student attributes on success in 

programming, Proceedings of the 6th annual conference on Innovation and technology in 
computer science education, 2001, pp. 49-52. 

[2] Jeanette Wing, “Computational thinking”, Communications of the ACM, March, 
2006. 



INFORMATICS 
 

PR O C E E D I N G S  O F  T HE  UNI O N O F  SC I E NT IS T S  –  RU S E  V O L.  10  /  2013  
 

65

[3] Kurland, D., Pea, R., Clement, C. & Mawby, R., A Study of the development of 
programming ability and thinking skills in high school students. In Soloway & Spohrer: 
Studying the Novice Programmer, 1989, pp. 209-228. 

[4] Perkins, D., Hanconck, C., Hobbs, R., Martin, F. & Simmons, R., Conditions of 
learning in novice programmers. In Soloway & Spohrer: Studying the Novice Programmer, 
1989, pp. 261-279. 

[5] Robins A, Rountree J, and Rountree N, Learning and teaching programming: A 
review and discussion, Computer Science Education - Volume 13 Issue 2, Routledge, 
Oxford England, 2003, pp: 137-172. 

[6] Soloway, E. & Spohrer, J. Studying the Novice Programmer, Lawrence Erlbaum 
Associates, Hillsdale, New Jersey. 1989, p. 497. 

[7] Леонтьев, А. Н. Деятельность, сознание, личность. Моссква, 1975. 
 

CONTACT ADDRESS 
Pr. Assist. Galina Atanasova 
Department of Informatics and Information Technologies  
Faculty of Natural Sciences and Education 
Angel Kanchev University of Ruse 
8 Studentska Str., 7017 Ruse,Bulgaria 
Phone: (++359 82) 888 326 
E-mail: gea@ami.uni-ruse.bg 
 
 
ДИДАКТИЧЕСКИ ЦЕЛИ И ПЕРСПЕКТИВИ В ОБУЧЕНИЕТО ПО 

КОМПЮТЪРНИ НАУКИ 

 
Галина Атанасова 

 
Русенски университет “Ангел Кънчев” 

 
Резюме: Статията разглежда обхвата на обучението по компютърни науки, 

дидактическите цели, на базата на които да се изграждат въвеждащите курсове по алгоритми, 
които са в основата на тези по програмиране. Обърнато е внимание на многоаспектността на 
материала и причините, поради които трябва прецизно да се структурира поднасянето на 
материала. Статията предлага подход от 4 нива за усвояване на знания и изграждане на умения 
за съставяне на алгоритми. Подчертава важността студентите да усвоят умения за съставяне 
на коректни и ефективни алгоритми, за да постигнат успех в програмирането.  

Ключови думи: Компютърни науки, Алгоритми, Обучението по алгоритми, Умения за 
съставяне на алгоритми 

 
 
 
 
 

 
 
 
 
 
 

mailto:gea@ami.uni-ruse.bg


 

9 7 7 1 3 1 4 3 0 7 0 0 0

I SSN 1314 - 3077


	b-koritza_editorals.pdf
	EDITORIAL BOARD
	Editor in Chief
	Managing Editor
	Members
	Assoc. Prof. Petar Rashkov,  PhD
	Prof. Margarita Teodosieva, PhD
	Assoc. Prof. Nadezhda Nancheva, PhD
	7000 Ruse
	BULGARIA
	PROCEEDINGS
	of the Union of Scientists – Ruse





	Mathematics_2013.pdf
	CONCLUSION
	In this work we establish existence of infinitely many solutions of the boundary value problem (1)-(2). Using appropriate extension we obtain infinitely many periodic solutions of the equation (1) which are antisymmetric with respect to  and , namely taking the periodic extension of the odd extension

	Informatics_2013_f.pdf
	REFERENCES
	CONTACT ADDRESSES
	ПОТЕНЦИАЛНИ ВЪЗМОЖНОСТИ НА УЕБ ПЛАТФОРМИТЕ ЗА ЛИЦА РАБОТЕЩИ НА СВОБОДНА ПРАКТИКА
	INTRODUCTION
	THE BASIC AIMS OF COMPUTER SCIENCE 
	THE KEY DIDACTIC AIM 
	ABSTRACTION: MODELLING, DECOMPOSING AND GENERALISING 
	PROGRAMMING 
	A SYSTEMATIC APPROACH IN LEARNING COMPUTER SCIENCE
	CONCLUSIONS AND FUTURE WORK
	REFERENCES
	CONTACT ADDRESS
	INTRODUCTION
	PROPOSED SOLUTION
	CONCLUSION
	REFERENCES
	CONTACT ADDRESS
	CONTACT ADDRESS
	CONTACT ADDRESS








