
PROCEEDINGS
of the Union of Scientists - Ruse

Book 5

Mathematics, Informatics and
Physics

Volume 8, 2011

RUSE

ISSN 1311-9974

PR O C E E D I N G S O F T HE UNI O N O F SC I E NT IS T S – RU S E V O L. 8 / 2011
3

The Ruse Branch of the

Union of Scientists in
Bulgaria was founded in 1956.
Its first Chairman was Prof.
Stoyan Petrov. He was followed
by Prof. Trifon Georgiev, Prof.
Kolyo Vasilev, Prof. Georgi
Popov, Prof. Mityo Kanev,
Assoc. Prof. Boris Borisov, Prof.
Emil Marinov. The individual
members number nearly 300
recognized scientists from
Ruse, organized in 13 scientific
sections. There are several
collective members too –
organizations and companies
from Ruse, known for their
success in the field of science
and higher education, or their
applied research activities. The
activities of the Union of
Scientists – Ruse are
numerous: scientific,
educational and other
humanitarian events directly
related to hot issues in the
development of Ruse region,
including its infrastructure,
environment, history and future
development; commitment to
the development of the scientific
organizations in Ruse, the
professional development and
growth of the scientists and the
protection of their individual
rights.

The Union of Scientists –
Ruse (US – Ruse) organizes
publishing of scientific and
popular informative literature,
and since 1998 – the
“Proceedings of the Union of
Scientists- Ruse".

BOOK 5

"MATHEMATICS,
INFORMATICS AND

PHYSICS"

VOLUME 8

CONTENTS

Mathematics

Meline Aprahamian...7
Mean Value Theorems in Discrete Calculus

Antoaneta Mihova...13
Polynomial Identities of the 2x2 Matrices over the Finite
Dimensional Grassmann Algebra

Veselina Evtimova ..19
Analysis of the Impact of the Incoming Calls Flow Intensity on
Some Basic Characteristics of an Emergency Aid Centre

Veselina Evtimova ..25
A Study on the Influence of Incoming Calls Flow Intensity on
the Waiting Time Characteristics of an Emergency Medical
Aid Centre

Ivanka Angelova ...31
Numerical Solution of the Two-Phase Stefan Problem for Sphere

Ivanka Angelova ...38
Mathematical Models of Interface Problems for Steady-
Unsteady Heat Conduction

Informatics

Valentin Velikov ..44
Some Possibilities For Automatic Programs Generation

Margarita Teodosieva ...50
Information System for Medicines

Mihail Iliev ...55
Extending the Lifetime of Wireless Sensor Networks by Using
a Modified Method for Hierarchical Organization of the
System in Clusters with Unequal Number of Devices

Georgi Krastev, Tsvetozar Georgiev ..63
One Approach for Continuous Signals Representation

Viktoria Rashkova...70
Design and Implementation of Knowledge Control Test System

Physics

Galina Krumova ..77
Calculations of Light, Medium and Heavy Neutron-Rich
Nuclei Characteristics

Vladimir Voinov, Roza Voinova ..86
Calculation of the Characteristic Impedance of a Microstrip,
Reversed Microstrip and Embedded Microstrip Lines

Galina Krumova ..93
Some Problems of Atomic and Nuclear Physics Teaching

Tsanko Karadzhov, Nikolay Angelov101
Determining the Lateral Oscilations Natural Frequency of a
Beam Fixed at One End

MATHEMATICS, INFORMATICS AND PHYSICS

 PR O C E E D I N G S O F T H E UNI O N O F SC I E NT I S T S – RUS E V O L. 8 / 2011
4

BOOK 5

"MATHEMATICS,
INFORMATICS AND

PHYSICS"

VOLUME 8

Education

Plamenka Hristova, Neli Maneva ...106
An Innovative Approach to Informatics Training for Children

Margarita Teodosieva ...114
Using Web Based Technologies on Training in XHTML

Desislava Atanasova, Plamenka Hristova120
Human Computer Iteraction in Computer Science Education

Valentina Voinohovska ...125
Computer – based conceptual mapping for facilitation of
creative and meaningful learning in the course of “Multimedia
Systems and technologies”

Galina Atanasova, Katalina Grigorova132
An Educational Tool for Novice Programmers

Valentina Voinohovska ...139
A Course for Promoting Student’s Visual Literacy

Magdalena Metodieva Petkova ..145
Teaching and Learning Mathematics Based on Geogebra Usage

Participation in International Projects

Nadezhda Nancheva ..153
Mosem 2 Project - Learning Electromagnetic Phenomena
and Superconductivity by Integration of Data Acquisition,
Data Video, Modelling, Simulation and Animation

EDUCATION

PR O C E E D I N G S O F T HE UNI O N O F SC I E NT IS T S – RU S E V O L. 8 / 2011
132

AN EDUCATIONAL TOOL FOR NOVICE PROGRAMMERS

Galina Atanasova, Katalina Grigorova

Angel Kanchev University of Ruse

Abstract: The paper investigates the characteristics of novice programmers, their difficulties in

introductory programming courses. There are described variety aspects of programming – too many reasons
for novices’ overwhelming and de-motivation. The significant role of visualization environments and algorithm
animation tools is presented. It is underlined that the provision of a useful and accurate mental model and
algorithm making abilities will positively influence a novice’s success in programming. A tool design for
algorithm animation and its learning aids are presented.

Keywords: Computer Science, Algorithm Animation, Algorithm Visualization Tools, Novice
Programmers

INTRODUCTION
Data structures and algorithms are important foundation topics in computer science

education. Students deal with algorithms in many computer science courses. For instance,
in computer graphics, students learn objects rendering algorithms, in networking, they
study algorithms that solve networks track congestion, and in database, they learn
algorithms that search or sort data. Accordingly, teaching algorithms is a common activity
that takes place in many computer science classes. However, algorithms are often hard to
understand because they usually model complicated concepts, refer to abstract notions,
describe complex dynamic changes in data structures, or solve relatively difficult problems.
Consequently, teaching algorithms is a challenging task that faces instructors and requires
a lot of explaining and illustrating. Therefore, teaching aids other than conventional are
needed to help students understand algorithms better [6]. The ability to realize graphic
representations faster than textual representations led to the idea of using block schemes
to describe the behaviour of algorithms to learners.

DIFFICULTIES IN LEARNING PROGRAMMING
Learning to program is generally considered hard, and programming courses often

have high dropout rates [10]. Educational research has been carried out to recognize the
characteristics of novice programmers and to study the learning process and its
connections to the variety aspects of programming. Let explore these issues more closely.

CHARACTERISTICS OF NOVICE PROGRAMMERS
By definition, novice programmers lack the knowledge and skills of programming

experts. Several different separating factors have been studied in the literature and were
also reviewed by Robins et al. [11]. Common features for novices seem to be that they are
limited to surface knowledge of programs and generally approach programming "line by
line", rather than at the level of bigger scope. Novices spend little time in designing and
testing their algorithm. When necessary, try to correct their mistakes with small local fixes
instead of more thoroughly reformulations [2]. The knowledge of novices tends to be
context specific rather than general [3], and they also often fail to apply correctly the
knowledge they have obtained. In fact, an average student does not usually make much
progress in an introductory programming course [2]. This was also noticed by the study of
McCracken et al. [5], who noticed serious deficiencies in student's programming skills in
introductory courses. This supports the empirical observations of many teachers;
programming novices often fail to recognize their own deficiencies. Also the personal

EDUCATION

PR O C E E D I N G S O F T HE UNI O N O F SC I E NT IS T S – RU S E V O L. 8 / 2011
133

properties of the students affect their performance. Mathematical or science abilities seem
to be related to success at learning to program [4, 7]. In an introducing course, different
student behaviours in confronting a problematic situation can be recognized. Perkins [9]
named two main types novices: stoppers and movers. In problematic situation stoppers
simply stop and abandon all hope of solving the problem on their own, while movers keep
trying, modifying their algorithm and use feedback about errors effectively. There are also
extreme movers, "thinkers", who cannot track their work, make changes more or less
randomly, and like stoppers do not progress very much in their task. There are effective
and ineffective novices, i.e. students who learn without excessive effort and those who do
not learn without inordinate personal attention [11]. Naturally, students' personal learning
strategies and motivation affect their success in learning programming strategies. Robins
et al. [11] stated that "Given that knowledge is (assumed to be) uniformly low, it is their
pre-existing strategies that initially distinguish effective and ineffective novices". Prior
knowledge and practices can also be a major source of errors, especially when trying to
transfer a step-by-step problem-solving solution directly from a natural language into a
program [13]. The differences between the natural language and a programming language
could easily cause problems.

VARIETY ASPECTS OF PROGRAMMING
Learning programming contains several activities, e.g., learning the language

features, algorithm design, and algorithm comprehension. Typical approach in textbooks
and programming courses is to start with declarative knowledge about a particular
language. However, studies show that it is important to bring also other aspects to the first
programming courses. Several common deficits in novices' understanding of specific
programming language constructs are presented in Soloway and Spohrer [13] and
collected also by Pane and Myers [8]. For example, variable initialization seems to be
more difficult to understand than updating or testing variables.

However, the main source of difficulty does not seem to be the syntax or
understanding of concepts, but rather basic algorithm planning [11]. It is important to
distinguish between programming knowledge and programming strategies [1]. Winslow
[14] noticed that students may know the syntax and semantics of individual statements,
but they do not know how to combine these features into valid algorithms. Even when they
know how to solve the problem by hand, they have trouble translating it into an equivalent
algorithm.

Students have often great difficulties in understanding all the issues, relating to the
execution of a program. Students have difficulties in understanding that each instruction is
executed in the state, which has been created by the previous instructions.

There is often little correspondence between the ability to write a program and the
awareness to read one. Programming courses should include them both. In addition, some
basic test and debugging strategies should be taught [14]. Robins et al. [11] suggest that
one more issue that complicates the learning of programming is the distinction between
the mental model as it was intended, and the program model as it actually is. There are
often mistakes in the design and bugs in the code. Also in working life, programmers face
daily the need to understand a program that is running in an unexpected way. This
requires an ability to track code to build a mental model of the program and predict its
behavior. This is one of skills that could be developed by emphasizing algorithm
comprehension and debugging strategies in the programming courses.

We can generalize that it is clear that novices are burdened by having to learn so
many new things in introductory programming courses. This leads to an overwhelming
perception of incapability and uphill struggle in a large proportion of novices. Their self-

EDUCATION

PR O C E E D I N G S O F T HE UNI O N O F SC I E NT IS T S – RU S E V O L. 8 / 2011
134

esteem may be getting defeated before they have even reached base subjects. Whilst
syntax might be a difficulty for novices, it is evident that the more pressing issue is the
deficiency in their problem solving and algorithm construction skills. Novices can
understand the individual concepts of programming in isolation but have significant
difficulties putting them together in order to express a problem’s solution. The provision of
a useful and accurate mental model and algorithm making abilities will positively influence
a novice’s success in programming.

THE ROLE OF ALGORITHM ANIMATION AND VISUALIZATION TOOLS IN

NOVICE PROGRAMMERS INTRODUCTORY COURSES
Algorithm visualization and animation tools are designed to make visible aspects of

programming often hidden from the programmer. As such they are capable of promoting
“low-level” models of algorithm features such as models of execution. They can reinforce a
model of an algorithm execution by explicitly showing how the execution of a statement
affects the program state and hence the environment in which the following statement is
executed.

Computerized aids that reinforce mental models and reliable algorithm construction
of the programming process are far more appropriate for novice programmers than
commercial environments [12]. There are many environments aimed novice programmers
learning improvement. These tools provide some benefit, but it is clear that these ideas
can be improved upon. If the features of these tools were usefully enhanced, extended
and combined, it might prove to be more beneficial to novice programmers.

FLOWCHARTS
Flowcharts have traditionally been used to visualise algorithm structures and are a

very appropriate visualisation form for novices. They are easy to learn, can be easily
understood with little or no prior training and provide the novice with an accurate mental
model of an algorithm and its components. Furthermore, flowcharts aid the processes of
abstracting a problem into a solution and the transition between problem specification and
syntactical solution.

Studies of flowchart-based animation tools have shown that by animating a flowchart,
we can further its effectiveness and offer a concrete model of execution by demonstrating
the interaction between algorithm components.

Our work benefits are directed to algorithm animation and block scheme advantages,
usefully extend and combine in an application with learning aids. We suppose that in this
way we will decrease variety problems in introductory programming courses and diminish
the mental models level of abstraction.

A TOOL DESIGN FOR ALGORITHM ANIMATION
This research presents a novice-programming tool. It is aimed at facilitating the

imperatives first approach to teaching introductory programming. This tool improves on
existing approaches by combining multiple forms of animation with algorithm variables
visualization features and the manually animation of flowcharts. It allows the user to
construct a wide range of algorithms, involving variables, assignment, decisions, and
looping. It is these basics that underpin the core problem solving aspects of imperative
programming. However, knowledge of these concepts provides important skills, useful for
developing process logic in any programming paradigm. The designed tool focuses on
using flowcharts to develop visual solutions to basic programming problems. This provides
the user with an accurate mental model of the algorithm structures. It provides the facility
to animate its algorithms and visualises the effect each algorithm statement has on any

EDUCATION

PR O C E E D I N G S O F T HE UNI O N O F SC I E NT IS T S – RU S E V O L. 8 / 2011

variables. The animation features and interaction with the visual representation reinforce
student understanding of both the visual solution and algorithm statement flow. The tool
allows the user to focus on the problem solving aspects of algorithm constructing whilst,
minimising all other distractions. This has been achieved by eliminating the necessity of
writing complex and confusing syntax and reducing the learning curve associated with
professional development environments. These distractions cloud the problem solving
processes at the heart of programming; minimising their impact reduces the cognitive
overload that inhibits the algorithm construction abilities of many novices.

Our tool’s user interface is simple and has a main working area of visualization for
the flowchart design. There is learner support, providing for block context depended
information entering. This tool’s feature ensures user’s mistake avoidance. The remaining
areas of its user interface contain the controls to construct, animate, save and load flow
charts, as well as perform other useful commands.

A flow chart creation
In the tool users can create an algorithm by interacting only with the flowchart and do

not have to trouble themselves with entering large amounts of complex and confusing
syntax. To add a component to a program, the user simply selects it from a component
toolbar and clicks on the relevant part of the flowchart. The component is defined and if
successful, gets added below the component selected (shown in figure 1). If the user
makes an error during the component definition, they are presented with an accurate and
meaningful error message.

Figure 1. The Tool’s User Interface

Variable handling
The values of algorithm variables are visualised in the window “Variables”. This

window is visible during algorithm execution/animation the variable inspector allows the
user to observe in real time the effect each algorithm statement has on the data used.

Algorithm animation
The tool improves on the capabilities of the static flowchart by animating its

135

EDUCATION

PR O C E E D I N G S O F T HE UNI O N O F SC I E NT IS T S – RU S E V O L. 8 / 2011

flowcharts to show an algorithm in action. The animation features emphasise algorithm
flow concepts and the interaction between algorithm components in the flowchart
representation. Combining this with the variable inspection features provides the user with
an accurate and concrete model of a working algorithm.

Figure 2. User Opportunities for Algorithm Visualization

The learner has two opportunities to visualize the algorithm action: automatically and

step by step - manually (figure 2). In the first mode only the input variables’ values are
entering and the final result is shown (figure 3). This mode provides a feature for quick
algorithm correctness testing. The step by step animation of a flowchart is achieved by
tracing through the flow of an algorithm, highlighting each flowchart component and
viewing relevant effect of its execution in real time by the variables’ window. When a cyclic
or conditional construction is reached, the flow in algorithm is diverted appropriately, based
on the result of the logical expression it contains.

Figure 3. Variable Window and Output Result

Conclusions and future work
Future plans are to combine the use of the tool with a well-defined teaching

pedagogy and online learning environment. Currently, the used pedagogy is based on
operational approach theories of learning development [15] and it will being investigate. Of
particular interest are the solving problems principles of this classroom teaching pedagogy.
However, this idea is still in the initial stages of development and much more work is
needed. Firstly, further research is needed to refine the ideas regarding this teaching
pedagogy and how it can best be used to aid in the delivery of the introductory concepts of
programming. Secondly, an online learning environment that fully exploits the capabilities
of our algorithm animation tool and the pedagogy needs to be researched, designed and

136

EDUCATION

PR O C E E D I N G S O F T HE UNI O N O F SC I E NT IS T S – RU S E V O L. 8 / 2011
137

built. Modification of the tool will also be needed to further its use with respect to these
proposals.

REFERENCES
[1] Byrne, P. & Lyons, G., The effect of student attributes on success in

programming, Proceedings of the 6th annual conference on Innovation and
technology in computer science education, 2001, pp. 49-52.

[2] Kölling, M. & Rosenberg, J., Blue - A Language for Teaching Object-Oriented
Programming, Proc. of the 27th SIGCSE Technical Symposium on Computer
Science Education, 1996, pp. 190-194

[3] Kurland, D., Pea, R., Clement, C. & Mawby, R., A Study of the development of
programming ability and thinking skills in high school students. In Soloway &
Spohrer: Studying the Novice Programmer, 1989, pp. 209-228.

[4] London Metropolitan University. Learning Objects for Introductory Programming.
http://www.unl.ac.uk/ltri/learningobjects/index.htm, referenced 2.12.2002.

[5] McCracken, M. Almstrum, D. Diaz, M. Guzdial, D.Hagen, Y. Kolikant, C. Laxer, L.
Thomas, I. Utting and T. Wilusz, , A Multi-National, Multi-Institutional Study of
Assessment of Programming Skills of First-year CS Students, SIGCSE Bulletin –
Volume 33 – Issue 4, ACM Press, NewYork – NY –US, 2002, pp 125-140

[6] Naps, T., G. Roessling, et. al., Exploring the Role of Visualization and
Engagement in Computer Science Education, report of the working group on
Visualization at the ITiCSE conference in Arhus, Denmark, 2002.

[7] Naps, T. L, G. Roessling, J. Anderson, S. Cooper,W. Dann, R. Fleischer, B.
Koldehofe, A. Korhonen, M. Kuittinen, C. Leska, L. Malmi, M. McNally, J.
Rantakokko, R. Ross, Evaluating the Educational Impact of Visualization, inroads
- Paving the Way Towards Excellence in Computing Education, volume 35,
Number 4., 2003, pp. 124-136, ACM Press, New York.

[8] Pane, J. & Myers, B. Usability Issues in the Design of Novice Programming
Systems, School of Computer Science Technical Reports, Carnegie Mellon
university, CMU-CS-96-132, 1996, available at
http://www.cs.cmu.edu/~pane/ftp/CMU-CS-96-132.pdf

[9] Perkins, D., Hanconck, C., Hobbs, R., Martin, F. & Simmons, R., Conditions of
learning in novice programmers. In Soloway & Spohrer: Studying the Novice
Programmer, 1989, pp. 261-279.

[10] Roberts E, An Overview of Mini Java, Proceedings of the 32nd SIGCSE technical
symposium on Computer Science Education, Volume 33 Issue 1, ACM Press,
New York - USA, 2001, pp: 1-5.

[11] Robins A, Rountree J, and Rountree N, Learning and teaching programming: A
review and discussion, Computer Science Education - Volume 13 Issue 2,
Routledge, Oxford England, 2003, pp: 137-172

[12] Smith P and Webb G, An Overview of a low-level Program Visualisation Tool for
Novice C Programmers, In Proceedings of the Sixth International Conference on
Computers in Education (ICCE '98) - Volume 2, Springer-Verlag, Beijing, China,
1998, pp: 213-216.

[13] Soloway, E. & Spohrer, J. Studying the Novice Programmer, Lawrence Erlbaum
Associates, Hillsdale, New Jersey. 1989, p. 497

[14] Winslow L., Programming Pedagogy -A Psychological Overview. SIGCSE
Bulletin – Volume 28 Issue 3, ACM Press, New York USA, 1996, pp. 17-22.

[15] Леонтьев, А. Н. Деятельность, сознание, личность. Моссква, 1975

EDUCATION

PR O C E E D I N G S O F T HE UNI O N O F SC I E NT IS T S – RU S E V O L. 8 / 2011
138

CONTACT ADDRESSES
Pr. Assist. Galina Atanasova
Department of Natural Science and Education,
Angel Kanchev University of Ruse
Phone: (+359 82) 888 326
Е-mail: gea@ami.ru.acad.bg

Assos. Prof. Katalina Grigorova,
Department of Natural Science and Education,
Angel Kanchev University of Ruse,
Phone: (+359 82) 888 464,
Е-mail: katya@ami.uni-ruse.bg.

СРЕДСТВО ЗА ОБУЧЕНИЕ НА НАЧИНАЕЩИ ПРОГРАМИСТИ

Галина Атанасова, Каталина Григорова

Русенски университет „Ангел Кънчев”

Резюме: Статията разглежда особеностите на начинаещите програмисти, техните
затруднения във въвеждащите курсове по програмиране. Обърнато е внимание на
многоаспектността на материала и причините, поради които начинаещите го намират за
труден, непреодолим и се демотивират. Представено е положителното въздействие на средите
за визуализация и анимация на алгоритми. Статията подчертава важността начинаещите да
усвоят умения за съставяне на коректни и ефективни алгоритми, за да постигнат успех в
програмирането. Представено е средство за подпомагане на начинаещите програмисти да
преодолеят трудностите и да изградят умения за съставяне на алгоритми.

Ключови думи: Компютърни науки, Алгоритми, Начинаещи програмисти, Анимирано
представяне на алгоритми

mailto:gea@ami.ru.acad.bg
mailto:katya@ami.uni-ruse.bg

9 7 7 1 3 1 1 9 9 7 0 0 6

I SSN 1311 - 9974

	a-koritza
	b-koritza_editorals
	EDITORIAL BOARD
	Editor in Chief
	Managing Editor
	Members
	Assoc. Prof. Petar Rashkov, PhD
	Assoc. Prof. Nadezhda Nancheva, PhD
	Assoc. Prof. Margarita Teodosieva, PhD
	7000 Ruse
	BULGARIA
	PROCEEDINGS
	of the Union of Scientists – Ruse

	c-Sadarjanie
	Mathematics
	REFERENCES

	Informatics
	METHODS
	IMPLEMENTATION
	SYNTEZIS OF A ADVANCED APPROACH FOR HIERARCHICAL ORGANIZATION OF WSN IN CLUSTERS OF UNEQUAL NUMBER OF SENSOR MOTES
	SIMULATION EVALUATION OF THE METHODS FOR HIERARCHICAL ORGANIZATION OF WSN

	INTRODUCTION
	LAYOUT
	CONCLUSIONS AND FUTURE WORK
	REFERENCES
	REFERENCES

	Physics
	Galina Krumova
	INTRODUCTION
	Fig. 1. а) Microstrip line (d is the thickness of the dielectric slab, w and t are the width and thickness of the strip conductor); b) Reversed microstrip line; c) Embedded microstrip line (dd is the plunging of the strip conductor) .
	ПРЕСМЯТАНЕ НА ХАРАКТЕРИСТИЧНИЯ ИМПЕДАНС НА МИКРОЛЕНТОВА, ОБЪРНАТА И ПОТОПЕНА МИКРОЛЕНТОВИ ЛИНИИ
	Galina Krumova
	CONCLUSION

	education
	REFERENCES
	INTRODUCTION
	DIFFICULTIES IN LEARNING PROGRAMMING
	CHARACTERISTICS OF NOVICE PROGRAMMERS
	VARIETY ASPECTS OF PROGRAMMING
	THE ROLE OF ALGORITHM ANIMATION AND VISUALIZATION TOOLS IN NOVICE PROGRAMMERS INTRODUCTORY COURSES
	FLOWCHARTS
	A TOOL DESIGN FOR ALGORITHM ANIMATION
	A flow chart creation
	Variable handling
	Algorithm animation
	Conclusions and future work
	CONTACT ADDRESSES

	SU-Ruse-Phys-NN-spisanie_2011
	Requirements and guidelines for the authors

